论文标题
检测和方法:盲目和低视力的人的近距离导航支持
Detect and Approach: Close-Range Navigation Support for People with Blindness and Low Vision
论文作者
论文摘要
在定位最终目的地或针对陌生环境中的特定物体时,患有失明和低视力(PBLV)的人会面临重大挑战。此外,除了最初定位并定位自己到目标对象外,从目前的立场接近最终目标通常是令人沮丧和挑战,尤其是当人们摆脱避免障碍的最初计划的途径时。在本文中,我们开发了一种新颖的可穿戴导航解决方案,以为用户提供实时指导,以便在不熟悉的环境中有效地接近感兴趣的目标对象。我们的系统包含两个关键的视觉计算函数:在3D中以3D为中的初始目标对象定位以及对用户轨迹的连续估计,这既基于由用户胸部前面安装在用户胸前的低成本单眼相机捕获的2D视频。这些功能使系统能够提出初始导航路径,在用户移动时不断更新路径,并及时提供有关用户路径校正的建议。我们的实验表明,我们的系统能够以室外和室内的误差小于0.5米的误差操作。该系统完全基于视觉,并且不需要其他传感器进行导航,并且可以使用可穿戴系统中的Jetson处理器进行计算以促进实时导航辅助。
People with blindness and low vision (pBLV) experience significant challenges when locating final destinations or targeting specific objects in unfamiliar environments. Furthermore, besides initially locating and orienting oneself to a target object, approaching the final target from one's present position is often frustrating and challenging, especially when one drifts away from the initial planned path to avoid obstacles. In this paper, we develop a novel wearable navigation solution to provide real-time guidance for a user to approach a target object of interest efficiently and effectively in unfamiliar environments. Our system contains two key visual computing functions: initial target object localization in 3D and continuous estimation of the user's trajectory, both based on the 2D video captured by a low-cost monocular camera mounted on in front of the chest of the user. These functions enable the system to suggest an initial navigation path, continuously update the path as the user moves, and offer timely recommendation about the correction of the user's path. Our experiments demonstrate that our system is able to operate with an error of less than 0.5 meter both outdoor and indoor. The system is entirely vision-based and does not need other sensors for navigation, and the computation can be run with the Jetson processor in the wearable system to facilitate real-time navigation assistance.