论文标题
在虚拟现实中对无损Real2Sim的深度广告牌
Deep Billboards towards Lossless Real2Sim in Virtual Reality
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
An aspirational goal for virtual reality (VR) is to bring in a rich diversity of real world objects losslessly. Existing VR applications often convert objects into explicit 3D models with meshes or point clouds, which allow fast interactive rendering but also severely limit its quality and the types of supported objects, fundamentally upper-bounding the "realism" of VR. Inspired by the classic "billboards" technique in gaming, we develop Deep Billboards that model 3D objects implicitly using neural networks, where only 2D image is rendered at a time based on the user's viewing direction. Our system, connecting a commercial VR headset with a server running neural rendering, allows real-time high-resolution simulation of detailed rigid objects, hairy objects, actuated dynamic objects and more in an interactive VR world, drastically narrowing the existing real-to-simulation (real2sim) gap. Additionally, we augment Deep Billboards with physical interaction capability, adapting classic billboards from screen-based games to immersive VR. At our pavilion, the visitors can use our off-the-shelf setup for quickly capturing their favorite objects, and within minutes, experience them in an immersive and interactive VR world with minimal loss of reality. Our project page: https://sites.google.com/view/deepbillboards/