论文标题

通过过程基序进行网络推断,以在线性随机过程中滞后相关性

Network inference via process motifs for lagged correlation in linear stochastic processes

论文作者

Schwarze, Alice C., Ichinaga, Sara M., Brunton, Bingni W.

论文摘要

来自时间序列数据的因果推断的主要挑战是计算可行性和准确性之间的权衡。我们在均值缓慢的均值逆转模型中以滞后协方差的过程基序进行动机,我们建议通过成对边缘测量(PEM)推断因果关系网络(PEMS)可以轻松地从滞后相关矩阵中计算出来。通过过程基序对协方差和滞后方差的贡献,我们制定了两种PEM,可以纠正混杂因素和反向因果关系。为了证明PEM的性能,我们考虑了线性随机过程的模拟网络干扰,并表明我们的PEM可以准确有效地推断网络。具体而言,对于略有自相关的时间序列数据,我们的方法获得的准确性高于或类似于Granger因果关系,转移熵和收敛的交叉映射 - 但使用这些方法中的任何一种都比计算时间短得多。我们的快速准确的PEM是用于网络推断的易于实现的方法,具有明确的理论基础。它们为当前范式提供了有希望的替代方案,用于从时间序列数据中推断线性模型,包括Granger因果关系,矢量自动进展和稀疏逆协方差估计。

A major challenge for causal inference from time-series data is the trade-off between computational feasibility and accuracy. Motivated by process motifs for lagged covariance in an autoregressive model with slow mean-reversion, we propose to infer networks of causal relations via pairwise edge measure (PEMs) that one can easily compute from lagged correlation matrices. Motivated by contributions of process motifs to covariance and lagged variance, we formulate two PEMs that correct for confounding factors and for reverse causation. To demonstrate the performance of our PEMs, we consider network interference from simulations of linear stochastic processes, and we show that our proposed PEMs can infer networks accurately and efficiently. Specifically, for slightly autocorrelated time-series data, our approach achieves accuracies higher than or similar to Granger causality, transfer entropy, and convergent crossmapping -- but with much shorter computation time than possible with any of these methods. Our fast and accurate PEMs are easy-to-implement methods for network inference with a clear theoretical underpinning. They provide promising alternatives to current paradigms for the inference of linear models from time-series data, including Granger causality, vector-autoregression, and sparse inverse covariance estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源