论文标题

部分可观测时空混沌系统的无模型预测

EEG-BBNet: a Hybrid Framework for Brain Biometric using Graph Connectivity

论文作者

Lakhan, Payongkit, Banluesombatkul, Nannapas, Sricom, Natchaya, Surapat, Korn, Rotruchiphong, Ratha, Sawangjai, Phattarapong, Yagi, Tohru, Limpiti, Tulaya, Wilaiprasitporn, Theerawit

论文摘要

基于脑电图(EEG)的脑生物识别技术已越来越多地用于个人识别。传统的机器学习技术以及现代深度学习方法已被应用,结果有令人鼓舞的结果。在本文中,我们提出了EEG-BBNET,这是一个将卷积神经网络(CNN)与图形卷积神经网络(GCNN)集成的混合网络。 CNN在自动特征提取方面的好处以及GCNN通过图形表示在EEG电极之间学习连通性的能力被共同利用。我们检查了各种连通性度量,即欧几里得距离,皮尔逊的相关系数,相锁定值,相位滞后指数和RHO指数。在由各种脑部计算机界面(BCI)任务组成的基准数据集上评估了所提出的方法的性能,并将其与其他最新方法进行了比较。我们发现,使用会议内数据,我们的模型在与事件相关的电位(ERP)任务中的表现优于所有基准,其平均正确识别率最高99.26%。具有Pearson相关性和RHO指数的EEG-BBNET提供了最佳的分类结果。此外,我们的模型使用会议和任务间数据证明了更大的适应性。我们还研究了我们提出的模型的实用性,其电极数量较少。额叶区域上的电极放置似乎最合适,性能损失最少。

Brain biometrics based on electroencephalography (EEG) have been used increasingly for personal identification. Traditional machine learning techniques as well as modern day deep learning methods have been applied with promising results. In this paper we present EEG-BBNet, a hybrid network which integrates convolutional neural networks (CNN) with graph convolutional neural networks (GCNN). The benefit of the CNN in automatic feature extraction and the capability of GCNN in learning connectivity between EEG electrodes through graph representation are jointly exploited. We examine various connectivity measures, namely the Euclidean distance, Pearson's correlation coefficient, phase-locked value, phase-lag index, and Rho index. The performance of the proposed method is assessed on a benchmark dataset consisting of various brain-computer interface (BCI) tasks and compared to other state-of-the-art approaches. We found that our models outperform all baselines in the event-related potential (ERP) task with an average correct recognition rates up to 99.26% using intra-session data. EEG-BBNet with Pearson's correlation and RHO index provide the best classification results. In addition, our model demonstrates greater adaptability using inter-session and inter-task data. We also investigate the practicality of our proposed model with smaller number of electrodes. Electrode placements over the frontal lobe region appears to be most appropriate with minimal lost in performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源