论文标题

基于学习的基于水下声学的原位风速的估计

Learning-based estimation of in-situ wind speed from underwater acoustics

论文作者

Zambra, Matteo, Cazau, Dorian, Farrugia, Nicolas, Gensse, Alexandre, Pensieri, Sara, Bozzano, Roberto, Fablet, Ronan

论文摘要

海面的风速检索对于科学和操作应用至关重要。除了天气模型,原位测量和遥感技术,尤其是卫星传感器外,还提供了互补的手段来监视风速。随着海面风的产生传播水下的声音,水下声学录音也可以传递与风向相关的信息。尽管模型驱动的方案,尤其是数据同化方法,是解决地球科学反向问题的最新方案,但机器学习技术变得越来越有吸引力,可以完全利用观察数据集的潜力。在这里,我们介绍了一种深度学习方法,用于从水下声学中检索风速序列,这可能是由其他数据源(例如天气模型重新分析)进行补充的。我们的方法桥梁数据同化和基于学习的框架可以从先前的物理知识和计算效率中受益。实际数据上的数值实验表明,我们优于最先进的数据驱动方法,其相对增益在RMSE方面高达16%。有趣的是,这些结果支持水下声学数据的时间动力学的相关性,以更好地告知风速的时间演变。他们还表明,在这里,多模式数据(此处的水下声学数据与ECMWF重新分析数据相结合)可能会进一步改善重建性能,包括相对于缺少水下的声学声学数据的鲁棒性。

Wind speed retrieval at sea surface is of primary importance for scientific and operational applications. Besides weather models, in-situ measurements and remote sensing technologies, especially satellite sensors, provide complementary means to monitor wind speed. As sea surface winds produce sounds that propagate underwater, underwater acoustics recordings can also deliver fine-grained wind-related information. Whereas model-driven schemes, especially data assimilation approaches, are the state-of-the-art schemes to address inverse problems in geoscience, machine learning techniques become more and more appealing to fully exploit the potential of observation datasets. Here, we introduce a deep learning approach for the retrieval of wind speed time series from underwater acoustics possibly complemented by other data sources such as weather model reanalyses. Our approach bridges data assimilation and learning-based frameworks to benefit both from prior physical knowledge and computational efficiency. Numerical experiments on real data demonstrate that we outperform the state-of-the-art data-driven methods with a relative gain up to 16% in terms of RMSE. Interestingly, these results support the relevance of the time dynamics of underwater acoustic data to better inform the time evolution of wind speed. They also show that multimodal data, here underwater acoustics data combined with ECMWF reanalysis data, may further improve the reconstruction performance, including the robustness with respect to missing underwater acoustics data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源