论文标题
通过第一原理模拟的MN调整ZnO的工作功能
Tuning the workfunction of ZnO through surface doping with Mn from first-principles simulations
论文作者
论文摘要
ZnO的表面掺杂允许定制材料的表面化学性质,同时保留大块的精美电子结构。除了明显的吸附能的变化和催化的激活能量外,表面掺杂还可以改变材料的工作功能,并可以将其调整为特定的光催化和光催化剂应用。我们提出了ZnO(0001)表面上MN表面掺杂的第一原理电子结构计算。在Zn原子的最高(表面)层上已经考虑了各种掺杂剂浓度,而材料的内部则保持在理想的Wurtzite结构处。对于每个系统,已经计算出表面能量和表面工作功能。对于O-终止表面的MN浓度的增加,工作功能和表面能量下降,而在金属端端的表面则更为复杂。我们讨论了该材料的表面稳定性和表面电子结构的趋势,以及它们如何影响其性质。
Surface doping of ZnO allows for tailoring the surface chemistry of the material while preserving the superb electronic structure of the bulk. Apart from obvious changes in adsorption energies and activation energies for catalysis, surface doping can alter the workfunction of the material and allow it to be tuned for specific photocatalytic and optoelectronic applications. We present first-principles electronic structure calculations for surface doping of Mn on the ZnO (0001) surface. Various dopant concentrations have been considered at the out-most (surface) layer of Zn atoms, while the interior of the material is kept at the ideal wurtzite structure. For each system, the surface energy and surface workfunction have been calculated. Both workfunction and surface energy drop with increasing Mn concentration for O-terminated surfaces, while more complex behaviour is observed in metal-terminated ones. We discuss trends in surface stability and surface electronic structure of this material and how they affect its properties.