论文标题
关于连接子图的超图的编排
On arrangements of hyperplanes from connected subgraphs
论文作者
论文摘要
我们研究了固定图的连接子图给出的超平面的增压平面的布置。这些包括谐振布置和Weyl排列的某些理想子部分。我们表征那些是免费的,简单的,方面的或可以验证的。特别是,只有当图是一个循环,路径,几乎是路径或带有三角形的路径时,这种布置才是免费的。
We investigate arrangements of hyperplanes whose normal vectors are given by connected subgraphs of a fixed graph. These include the resonance arrangement and certain ideal subarrangements of Weyl arrangements. We characterize those which are free, simplicial, factored, or supersolvable. In particular, such an arrangement is free if and only if the graph is a cycle, a path, an almost path, or a path with a triangle attached to it.