论文标题

在二维中有效的不对称刚性布朗粒子的持久性

Persistence of an active asymmetric rigid Brownian particle in two dimensions

论文作者

Ghosh, Anirban, Mandal, Sudipta, Chakraborty, Dipanjan

论文摘要

我们已经研究了具有二维形状不对称性的活性布朗粒子的持久性概率$ p(t)$。持续性概率定义为在固定给定时间间隔中没有更改其符号的随机变量的概率。我们研究了两种情况:自由活性粒子的扩散和谐波捕获的粒子的扩散。在我们较早的工作中,\ emph {Ghosh等。 al。},《化学物理学杂志》,\ textbf {152},174901,(2020),我们已经证明$ p(t)$可用于确定不对称形状粒子的翻译和旋转扩散常数。该方法的优点是,不需要对AN-异型粒子的旋转运动的测量。在本文中,我们将研究扩展到活跃的偏异向粒子,并展示如何在推进速度的情况下修改An-异型粒子的持续性概率。此外,我们从单个粒子langevin动力学的数值模拟中验证了分析表达,并测试我们早期工作中提出的方法是否可以区分活性和被动的偏异向粒子。

We have studied the persistence probability $p(t)$ of an active Brownian particle with shape asymmetry in two dimensions. The persistence probability is defined as the the probability of a stochastic variable that has not changed it's sign in the fixed given time interval. We have investigated two cases: diffusion of a free active particle and that of harmonically trapped particle. In our earlier work, \emph{Ghosh et. al.}, Journal of Chemical Physics, \textbf{152},174901, (2020), we had shown that $p(t)$ can be used to determine translational and the rotational diffusion constant of an asymmetric shape particle. The method has the advantage that the measurement of the rotational motion of the an-isotropic particle is not required. In this paper, we extend the study to an active an-isotropic particle and show how the persistence probability of an an-isotropic particle is modified in the presence of a propulsion velocity. Further, we validate our analytical expression against the measured persistence probability from the numerical simulations of single particle Langevin dynamics and test whether the method proposed in our earlier work can distinguish between an active and a passive an-isotropic particle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源