论文标题

盲图脱毛,核大小和巨大噪音

Blind Image Deblurring with Unknown Kernel Size and Substantial Noise

论文作者

Zhuang, Zhong, Li, Taihui, Wang, Hengkang, Sun, Ju

论文摘要

在计算机视觉和邻近字段中,已广泛研究了盲图片脱毛(BID)。投标的现代方法可以分为两类:使用统计推断和数值优化处理单个实例的单稳定方法,以及数据驱动的方法,这些方法将训练深度学习模型直接删除未来实例。数据驱动的方法可以摆脱得出准确的模型模型的困难,但从根本上受到培训数据的多样性和质量的限制 - 收集足够表达和现实的培训数据是一个坚定的挑战。在本文中,我们专注于保持竞争力和必不可少的单一实体方法。但是,大多数此类方法没有规定如何处理未知内核大小和大量噪音,从而排除了实际部署。实际上,我们表明,当核大小被明确指定时和/或噪声水平高时,几种最先进的(SOTA)单位方法方法是不稳定的。从积极的一面来看,我们提出了一种实用的竞标方法,该方法对这两者都是稳定的,这是同类的。我们的方法是基于最新的思想,即通过整合物理模型和结构深度神经网络,而无需额外的培训数据。我们介绍了几种至关重要的修改以实现所需的稳定性。与SOTA单位结构以及数据驱动的方法相比,对标准合成数据集以及现实世界中的NTIRE2020和REALBLUR数据集进行了广泛的经验测试。我们方法的代码可在:\ url {https://github.com/sun-unm/blind-image-deblurring}中获得。

Blind image deblurring (BID) has been extensively studied in computer vision and adjacent fields. Modern methods for BID can be grouped into two categories: single-instance methods that deal with individual instances using statistical inference and numerical optimization, and data-driven methods that train deep-learning models to deblur future instances directly. Data-driven methods can be free from the difficulty in deriving accurate blur models, but are fundamentally limited by the diversity and quality of the training data -- collecting sufficiently expressive and realistic training data is a standing challenge. In this paper, we focus on single-instance methods that remain competitive and indispensable. However, most such methods do not prescribe how to deal with unknown kernel size and substantial noise, precluding practical deployment. Indeed, we show that several state-of-the-art (SOTA) single-instance methods are unstable when the kernel size is overspecified, and/or the noise level is high. On the positive side, we propose a practical BID method that is stable against both, the first of its kind. Our method builds on the recent ideas of solving inverse problems by integrating the physical models and structured deep neural networks, without extra training data. We introduce several crucial modifications to achieve the desired stability. Extensive empirical tests on standard synthetic datasets, as well as real-world NTIRE2020 and RealBlur datasets, show the superior effectiveness and practicality of our BID method compared to SOTA single-instance as well as data-driven methods. The code of our method is available at: \url{https://github.com/sun-umn/Blind-Image-Deblurring}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源