论文标题
当矩阵条件暗示Mal'tSev属性
When a matrix condition implies the Mal'tsev property
论文作者
论文摘要
矩阵条件将线性mal'tSEV条件从类别理论中的通用代数到精确性属性扩展。有些可以在有限的完整上下文中说明,而通常只能对常规类别进行说明。我们研究这种矩阵条件何时意味着Mal'TSEV属性。我们的主要结果断言,对于两种类型的矩阵,这种含义等效于相应的含义限于通用代数的品种的背景。
Matrix conditions extend linear Mal'tsev conditions from Universal Algebra to exactness properties in Category Theory. Some can be stated in the finitely complete context while, in general, they can only be stated for regular categories. We study when such a matrix condition implies the Mal'tsev property. Our main results assert that, for both types of matrices, this implication is equivalent to the corresponding implication restricted to the context of varieties of universal algebras.