论文标题
您现在是否舒适:深入学习冬季热舒适的时间变化
Are You Comfortable Now: Deep Learning the Temporal Variation in Thermal Comfort in Winters
论文作者
论文摘要
智能建筑中的室内热舒适对乘员的健康和表现有重大影响。因此,机器学习(ML)越来越多地用于解决与室内热舒适的挑战。热舒适感的时间变化是调节居住者福祉和能耗的重要问题。但是,在大多数基于ML的热舒适研究中,不考虑时间中的时间方面,例如一天中的时间,昼夜节律和室外温度。这项工作解决了这些问题。它研究了昼夜节律和室外温度对ML模型的预测准确性和分类性能的影响。这些数据是通过在14个教室中进行的长达一个月的实地实验收集的,其中512名小学生。四个热舒适度指标被认为是深神经网络的输出,并支持数据集的向量机模型。时间变异性对学童舒适性的影响通过“一天中的时间”分析显示。预测准确性的时间差异已显示(多达80%)。此外,我们表明室外温度(随时间变化)对热舒适模型的预测性能产生了积极影响高达30%。时空环境的重要性通过对比的是微观级别(特定于位置)和宏观(整个城市中的6个位置)的重要性。这项工作的最重要发现是,对于多个热舒适度指标,显示了预测准确性的明确提高,而天空中的时间和天空照明则有所增加。
Indoor thermal comfort in smart buildings has a significant impact on the health and performance of occupants. Consequently, machine learning (ML) is increasingly used to solve challenges related to indoor thermal comfort. Temporal variability of thermal comfort perception is an important problem that regulates occupant well-being and energy consumption. However, in most ML-based thermal comfort studies, temporal aspects such as the time of day, circadian rhythm, and outdoor temperature are not considered. This work addresses these problems. It investigates the impact of circadian rhythm and outdoor temperature on the prediction accuracy and classification performance of ML models. The data is gathered through month-long field experiments carried out in 14 classrooms of 5 schools, involving 512 primary school students. Four thermal comfort metrics are considered as the outputs of Deep Neural Networks and Support Vector Machine models for the dataset. The effect of temporal variability on school children's comfort is shown through a "time of day" analysis. Temporal variability in prediction accuracy is demonstrated (up to 80%). Furthermore, we show that outdoor temperature (varying over time) positively impacts the prediction performance of thermal comfort models by up to 30%. The importance of spatio-temporal context is demonstrated by contrasting micro-level (location specific) and macro-level (6 locations across a city) performance. The most important finding of this work is that a definitive improvement in prediction accuracy is shown with an increase in the time of day and sky illuminance, for multiple thermal comfort metrics.