论文标题

kompaneets方程中的全球动力和光子损失

Global Dynamics and Photon Loss in the Kompaneets Equation

论文作者

Ballew, Joshua, Iyer, Gautam, Levermore, C. David, Liu, Hailiang, Pego, Robert L.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The Kompaneets equation governs dynamics of the photon energy spectrum in certain high temperature (or low density) plasmas. We prove several results concerning the long-time convergence of solutions to Bose--Einstein equilibria and the failure of photon conservation. In particular, we show the total photon number can decrease with time via an outflux of photons at the zero-energy boundary. The ensuing accumulation of photons at zero energy is analogous to Bose--Einstein condensation. We provide two conditions that guarantee that photon loss occurs, and show that once loss is initiated then it persists forever. We prove that as $t\to \infty$, solutions necessarily converge to equilibrium and we characterize the limit in terms of the total photon loss. Additionally, we provide a few results concerning the behavior of the solution near the zero-energy boundary, an Oleinik inequality, a comparison principle, and show that the solution operator is a contraction in $L^1$. None of these results impose a boundary condition at the zero-energy boundary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源