论文标题
在刺激的共振光子光子对撞机中搜索带有两个激光束的sub-ev轴状颗粒,基于一种新方法,以区分压力独立的成分
Search for sub-eV axion-like particles in a stimulated resonant photon-photon collider with two laser beams based on a novel method to discriminate pressure-independent components
论文作者
论文摘要
通过将两色近红外脉冲激光器聚焦到沿公共光轴的真空中,已搜索了子-EV轴状颗粒(ALP)。在集中的准平行碰撞系统中,通过组合创建字段($ 2.5 \,\ Mathrm {MJ}/47 \,\ Mathrm {fs} $ ti:sapphire laser)和背景诱导字段($ 1.5 \,$ 1.5 \ \,\ m j}激光器)在真空室中尝试通过交换阿尔普斯通过刺激的共振光子光子散射来检测信号光子。信号波长可以通过真空中的能量弹药保护确定,并且与原子四波混合(AFWM)过程确定的信号波长相吻合。在这项工作中,脉冲能比以前的搜索中的数量级高一个数量级,除了在二次压力依赖性之后,首次将光学元素的AFWM从光学元素中观察到是独立的背景。原则上,通过ALP交换(VFWM)真空中的四波混合过程也必须与压力无关,因此开发一种新方法来区分光学元素AFWM是必不可少的,对于将脉冲能量提高到未来升级搜索所需的值所需的值。在本文中,我们将介绍基于光束横截面依赖性的光学元素AFWM过程中量化产量的既定方法。使用新方法,发现信号光子的数量与零一致。然后,我们成功获得了一个新的排除区域,以Alp-Photon耦合,$ g/m $和ALP MASS $ M $之间的关系,达到最敏感的点$ G/m = 1.14 \ times10^{ - 5} \,\ Mathrm {gev^{ - 1}} $ Mathrm {gev^{ - 1} $ M = 0.18}
Sub-eV axion-like particles (ALPs) have been searched for by focusing two-color near-infrared pulse lasers into a vacuum along a common optical axis. Within the focused quasi-parallel collision system created by combining a creation field ($2.5\,\mathrm{mJ}/47\,\mathrm{fs}$ Ti:Sapphire laser) and a background inducing field ($1.5\,\mathrm{mJ}/9\,\mathrm{ns}$ Nd:YAG laser), the detection of signal photons via stimulated resonant photon-photon scattering by exchanging ALPs was attempted in a vacuum chamber. The signal wavelength can be determined via energy-momentum conservation in the vacuum, and it coincides with that determined from the atomic four-wave-mixing (aFWM) process. In this work, the pulse energies were one order of magnitude higher than those in the previous search, allowing aFWM from optical elements to be observed as a pressure-independent background for the first time, in addition to the residual-gas-originating aFWM following a quadratic pressure dependence. In principle the four-wave-mixing process in vacuum via ALP exchanges (vFWM) must also be pressure-independent, so the development of a new method for discriminating the optical-element aFWM is indispensable for increasing the pulse energies to the values needed for future upgraded searches. In this paper, we will present the established method for quantifying the yield from the optical-element aFWM process based on the beam cross-section dependence. With the new method, the number of signal photons was found to be consistent with zero. We then successfully obtained a new exclusion region in the relation between ALP-photon coupling, $g/M$, and the ALP mass $m$, reaching the most sensitive point $g/M = 1.14\times10^{-5}\,\mathrm{GeV^{-1}}$ at $m = 0.18\,\mathrm{eV}$.