论文标题
直接操纵超导旋转量子值强烈耦合到Transmon Qubit
Direct manipulation of a superconducting spin qubit strongly coupled to a transmon qubit
论文作者
论文摘要
半导体中的旋转矩形目前是量子计算最有前途的架构之一。但是,他们在实现远距离的多量相互作用方面面临挑战。超导旋转Qubits通过在Andreev级别的自由度中编码一个量子,提供了一种有希望的替代方法。这样的Andreev自旋量子置量置量可以利用电路量子电动力学的优势,这是由固有的自旋旋转耦合启用的。 Andreev旋转量子标式的第一个实现在半导体弱链路的激发态中编码了Qubit,从而导致计算子空间经常衰减。此外,需要间接拉曼过渡的需要阻碍快速的量子操作。在这里,我们使用静电定义的量子点Josephson结的带有大充电能量的量子量子点的旋转式双重基态利用了不同的Qubit子空间。此外,我们使用磁场在10 GHz的频率范围内实现直接自旋操作。使用全电动微波驱动器,我们达到了超过200 MHz的Rabi频率。我们此外,将Andreev旋转值嵌入超导式旋转值,显示出强相干Qubit Qubit耦合。这些结果是朝着混合体系结构迈出的关键步骤,结合了超导和半导体量子的有益方面。
Spin qubits in semiconductors are currently one of the most promising architectures for quantum computing. However, they face challenges in realizing multi-qubit interactions over extended distances. Superconducting spin qubits provide a promising alternative by encoding a qubit in the spin degree of freedom of an Andreev level. Such an Andreev spin qubit could leverage the advantages of circuit quantum electrodynamic, enabled by an intrinsic spin-supercurrent coupling. The first realization of an Andreev spin qubit encoded the qubit in the excited states of a semiconducting weak-link, leading to frequent decay out of the computational subspace. Additionally, rapid qubit manipulation was hindered by the need for indirect Raman transitions. Here, we exploit a different qubit subspace, using the spin-split doublet ground state of an electrostatically-defined quantum dot Josephson junction with large charging energy. Additionally, we use a magnetic field to enable direct spin manipulation over a frequency range of 10 GHz. Using an all-electric microwave drive we achieve Rabi frequencies exceeding 200 MHz. We furthermore embed the Andreev spin qubit in a superconducting transmon qubit, demonstrating strong coherent qubit-qubit coupling. These results are a crucial step towards a hybrid architecture that combines the beneficial aspects of both superconducting and semiconductor qubits.