论文标题
用于分布概括的元杂种特征学习
Meta-Causal Feature Learning for Out-of-Distribution Generalization
论文作者
论文摘要
因果推论已成为处理分布外(OOD)概括问题的强大工具,该问题旨在提取不变特征。但是,常规方法从多个数据拆分中应用因果学习者,这可能会从数据分布不平衡的数据分布中产生偏见的表示学习,并且在异质源中不变特征学习中的难度。为了解决这些问题,本文介绍了平衡的元伴侣学习者(BMCL),其中包括平衡的任务生成模块(BTG)和元疗法特征学习模块(MCFL)。具体而言,BTG模块学会通过一种自学的分区算法来生成平衡子集,该算法对示例类和上下文的比例有限制。 MCFL模块训练一个适合不同分布的元学习者。在NICO ++数据集上进行的实验验证了BMCL有效地识别了类不变的视觉区域进行分类,并可以作为提高最新方法性能的一般框架。
Causal inference has become a powerful tool to handle the out-of-distribution (OOD) generalization problem, which aims to extract the invariant features. However, conventional methods apply causal learners from multiple data splits, which may incur biased representation learning from imbalanced data distributions and difficulty in invariant feature learning from heterogeneous sources. To address these issues, this paper presents a balanced meta-causal learner (BMCL), which includes a balanced task generation module (BTG) and a meta-causal feature learning module (MCFL). Specifically, the BTG module learns to generate balanced subsets by a self-learned partitioning algorithm with constraints on the proportions of sample classes and contexts. The MCFL module trains a meta-learner adapted to different distributions. Experiments conducted on NICO++ dataset verified that BMCL effectively identifies the class-invariant visual regions for classification and may serve as a general framework to improve the performance of the state-of-the-art methods.