论文标题
基于机器学习和可能性原理的灵活事件重建
A flexible event reconstruction based on machine learning and likelihood principles
论文作者
论文摘要
事件重建是许多粒子物理实验中的核心步骤,将检测器观察到参数估计值。例如,考虑到检测器的传感器读数,估计相互作用的能量。相应的似然函数通常很棘手,需要构建近似值。在我们的工作中,我们首先展示了如何将多传感器检测器的全部可能性分解为较小的术语,其次,我们如何仅基于正向模拟来训练神经网络以近似所有术语。我们的技术导致快速,灵活且接近最佳的替代模型与可能性成正比,并且可以与标准推理技术结合使用,从而允许对不确定性进行一致的处理。我们说明了基于最大似然和贝叶斯后采样的中微子望远镜中的参数推断技术。鉴于它的灵活性,我们还展示了我们的几何优化方法,从而可以学习最佳的探测器设计。最后,我们将方法应用于对吨尺度水基液体闪烁体检测器的现实模拟。
Event reconstruction is a central step in many particle physics experiments, turning detector observables into parameter estimates; for example estimating the energy of an interaction given the sensor readout of a detector. A corresponding likelihood function is often intractable, and approximations need to be constructed. In our work, we first show how the full likelihood for a many-sensor detector can be broken apart into smaller terms, and secondly how we can train neural networks to approximate all terms solely based on forward simulation. Our technique results in a fast, flexible, and close-to-optimal surrogate model proportional to the likelihood and can be used in conjunction with standard inference techniques allowing for a consistent treatment of uncertainties. We illustrate our technique for parameter inference in neutrino telescopes based on maximum likelihood and Bayesian posterior sampling. Given its great flexibility, we also showcase our method for geometry optimization enabling to learn optimal detector designs. Lastly, we apply our method to realistic simulation of a ton-scale water-based liquid scintillator detector.