论文标题

扩展系统中非线性光学元件的动力学浆相方法的Floquet公式

Floquet formulation of the dynamical Berry-phase approach to non-linear optics in extended systems

论文作者

Alliati, Ignacio M., Grüning, Myrta

论文摘要

我们提出了一种用于在扩展系统中非线性光学性质的AB-Initio计算的FLOQUET方案。这需要基于动态浆果相极化的实时方法的重新制定[Attaccalite&Grüning,PRB 88,1-9(2013)],并保留在电场中非扰动的优势。所提出的方法适用于定期驱动的哈密顿人,并利用这种对称性将时间依赖的问题转变为独立于时间独立的特征值问题。我们在独立的粒子级别实现了这种浮标方案,并将其与实时方法进行了比较。我们的重新印度重现了实时计算的$ 2^{nd} $和$ 3^{rd} $订单的多数和二维材料的订单敏感性,同时将相关的计算成本降低了一个或两个范围。

We present a Floquet scheme for the ab-initio calculation of nonlinear optical properties in extended systems. This entails a reformulation of the real-time approach based on the dynamical Berry-phase polarisation [Attaccalite & Grüning, PRB 88, 1-9 (2013)] and retains the advantage of being non-perturbative in the electric field. The proposed method applies to periodically-driven Hamiltonians and makes use of this symmetry to turn a time-dependent problem into a self-consistent time-independent eigenvalue problem. We implemented this Floquet scheme at the independent particle level and compared it with the real-time approach. Our reformulation reproduces real-time-calculated $2^{nd}$ and $3^{rd}$ order susceptibilities for a number of bulk and two-dimensional materials, while reducing the associated computational cost by one or two orders of magnitude.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源