论文标题
从轻松到硬:上下文感知文档排名的双重课程学习框架
From Easy to Hard: A Dual Curriculum Learning Framework for Context-Aware Document Ranking
论文作者
论文摘要
搜索会话中的上下文信息对于捕获用户的搜索意图很重要。已经提出了各种方法来对用户行为序列进行建模,以改善会话中的文档排名。通常,在每个训练时期内随机对(搜索上下文,文档)对的训练样本进行随机采样。实际上,了解用户的搜索意图和判断文档的相关性的困难在一个搜索上下文到另一个搜索上下文的差异很大。混合不同困难的训练样本可能会使模型的优化过程感到困惑。在这项工作中,我们为上下文感知文档排名提出了一个课程学习框架,其中排名模型以易于匹配的方式学习搜索上下文和候选文档之间的匹配信号。这样一来,我们旨在将模型逐渐指向全球最佳。为了利用正面和负面的例子,设计了两个课程。两个真实查询日志数据集的实验表明,我们提出的框架可以显着改善几种现有方法的性能,以证明课程学习对上下文感知文档排名的有效性。
Contextual information in search sessions is important for capturing users' search intents. Various approaches have been proposed to model user behavior sequences to improve document ranking in a session. Typically, training samples of (search context, document) pairs are sampled randomly in each training epoch. In reality, the difficulty to understand user's search intent and to judge document's relevance varies greatly from one search context to another. Mixing up training samples of different difficulties may confuse the model's optimization process. In this work, we propose a curriculum learning framework for context-aware document ranking, in which the ranking model learns matching signals between the search context and the candidate document in an easy-to-hard manner. In so doing, we aim to guide the model gradually toward a global optimum. To leverage both positive and negative examples, two curricula are designed. Experiments on two real query log datasets show that our proposed framework can improve the performance of several existing methods significantly, demonstrating the effectiveness of curriculum learning for context-aware document ranking.