论文标题
部分可观测时空混沌系统的无模型预测
Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference
论文作者
论文摘要
我们提出了一个静态分析,用于发现给定概率程序的可区分或更普遍的平滑部分,并展示如何使用分析来改善路径梯度估计器,这是后验推理和模型学习的最流行方法之一。我们的改进将估计器的范围从可区分模型到非差异性模型的范围,而无需用户手动干预;改进的估计器使用我们的静态分析自动识别给定概率程序的可区分部分,并将路径梯度估计器应用于已识别的零件,同时使用程序的其余部分使用更通用但效率较低的估计器(称为得分估计器)。我们的分析具有令人惊讶的微妙的声音论点,部分原因是从计划分析设计师的角度看待某些目标平滑性属性的不当行为。例如,某些平滑度属性不能通过函数组成保留,这使得在不牺牲精度的情况下很难分析顺序组成。我们在目标平滑性属性上提出五个假设,证明我们在这些假设下的分析的健全性,并表明我们的主要示例满足了这些假设。我们还表明,通过使用来自分析的信息实例化以实现可不同性,我们的改进梯度估计器满足了重要的可不同性要求,因此在规律性条件下平均计算正确的估计值(即,返回无偏见的估计值)。我们在Pyro语言中对代表性概率程序进行的实验表明,我们的静态分析能够准确地识别这些程序的光滑部分,并使我们改进的路径梯度估计器利用了这些程序中高性能的所有机会。
We present a static analysis for discovering differentiable or more generally smooth parts of a given probabilistic program, and show how the analysis can be used to improve the pathwise gradient estimator, one of the most popular methods for posterior inference and model learning. Our improvement increases the scope of the estimator from differentiable models to non-differentiable ones without requiring manual intervention of the user; the improved estimator automatically identifies differentiable parts of a given probabilistic program using our static analysis, and applies the pathwise gradient estimator to the identified parts while using a more general but less efficient estimator, called score estimator, for the rest of the program. Our analysis has a surprisingly subtle soundness argument, partly due to the misbehaviours of some target smoothness properties when viewed from the perspective of program analysis designers. For instance, some smoothness properties are not preserved by function composition, and this makes it difficult to analyse sequential composition soundly without heavily sacrificing precision. We formulate five assumptions on a target smoothness property, prove the soundness of our analysis under those assumptions, and show that our leading examples satisfy these assumptions. We also show that by using information from our analysis instantiated for differentiability, our improved gradient estimator satisfies an important differentiability requirement and thus computes the correct estimate on average (i.e., returns an unbiased estimate) under a regularity condition. Our experiments with representative probabilistic programs in the Pyro language show that our static analysis is capable of identifying smooth parts of those programs accurately, and making our improved pathwise gradient estimator exploit all the opportunities for high performance in those programs.