论文标题

部分可观测时空混沌系统的无模型预测

Atrial Fibrillation Recurrence Risk Prediction from 12-lead ECG Recorded Pre- and Post-Ablation Procedure

论文作者

Zvuloni, Eran, Gendelman, Sheina, Mohanty, Sanghamitra, Lewen, Jason, Natale, Andrea, Behar, Joachim A.

论文摘要

简介:在房颤(AF)导管消融过程(CAP)期间记录了12条潜在的心电图(ECG)。没有长时间的随访评估AF复发(AFR),确定CAP是否成功并不容易。因此,AFR风险预测算法可以使CAP患者更好地管理。在这项研究中,我们从cap前后记录的12铅ECG中提取了功能,并培训AFR风险预测机器学习模型。方法:从112例患者中提取前和后段段。该分析包括信号质量标准,心率变异性和由12铅ECG设计的形态生物标志物(总体804个功能)。在112例患者中,有43例AFR临床终点可用。这些用于使用前或后CAP特征来评估AFR风险预测的可行性。在嵌套的交叉验证框架内对随机森林分类器进行了训练。结果:发现36个特征在区分手术前和手术后具有统计学意义(n = 112)。对于分类,报告了接收器操作特性(AUROC)曲线下的区域,AUROC_PRE = 0.64,AUROC_POST = 0.74(n = 43)。讨论和结论:此初步分析表明AFR风险预测的可行性。这样的模型可用于改善盖帽管理。

Introduction: 12-lead electrocardiogram (ECG) is recorded during atrial fibrillation (AF) catheter ablation procedure (CAP). It is not easy to determine if CAP was successful without a long follow-up assessing for AF recurrence (AFR). Therefore, an AFR risk prediction algorithm could enable a better management of CAP patients. In this research, we extracted features from 12-lead ECG recorded before and after CAP and train an AFR risk prediction machine learning model. Methods: Pre- and post-CAP segments were extracted from 112 patients. The analysis included a signal quality criterion, heart rate variability and morphological biomarkers engineered from the 12-lead ECG (804 features overall). 43 out of the 112 patients (n) had AFR clinical endpoint available. These were utilized to assess the feasibility of AFR risk prediction, using either pre or post CAP features. A random forest classifier was trained within a nested cross validation framework. Results: 36 features were found statistically significant for distinguishing between the pre and post surgery states (n=112). For the classification, an area under the receiver operating characteristic (AUROC) curve was reported with AUROC_pre=0.64 and AUROC_post=0.74 (n=43). Discussion and conclusions: This preliminary analysis showed the feasibility of AFR risk prediction. Such a model could be used to improve CAP management.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源