论文标题
一维旋转1/2型号中的非词形旋转空间立方组和SU(2)$ _ 1 $共形不变性
Nonsymmorphic spin-space cubic groups and SU(2)$_1$ conformal invariance in one-dimensional spin-1/2 models
论文作者
论文摘要
最近,在相图中占据有限区域的紧急su(2)$ _ 1 $保形不变性的扩展无间隙阶段已在具有非形态$ O_H $对称组的一维旋转1/2型号中发现。在这项工作中,我们调查了是否可以放松出现的SU(2)$ _ 1 $不变性条件的问题。我们发现,除非非甲形$ o_h $ group外,其他四个较小的非肌型立方组,包括$ o $,$ t_h $,$ t_d $和$ t $也可以引起agrent su(2)$ _ 1 $ norvariance。构建了具有这些非词法基团作为对称组的最小自旋1/2模型,并提供了新兴SU的数值证据(2)$ _ 1 $不变性。我们的工作对于理解具有非词对称性的一维自旋系统中的无间隙相很有用。
Recently, extended gapless phases with emergent SU(2)$_1$ conformal invariance occupying finite regions in the phase diagrams have been found in one-dimensional spin-1/2 models with nonsymmorphic $O_h$ symmetry groups. In this work, we investigate the question of whether the conditions for emergent SU(2)$_1$ invariance can be loosened. We find that besides the nonsymmorphic $O_h$ group, the other four smaller nonsymmorphic cubic groups including $O$, $T_h$, $T_d$ and $T$ can also give rise to emergent SU(2)$_1$ invariance. Minimal spin-1/2 models having these nonsymmorphic cubic groups as symmetry groups are constructed, and numerical evidences for the emergent SU(2)$_1$ invariance are provided. Our work is useful for understanding gapless phases in one-dimensional spin systems with nonsymmorphic symmetries.