论文标题
深层结构性因果模型
Deep Structural Causal Shape Models
论文作者
论文摘要
因果推理提供了一种语言,以提出纯粹统计关联以外的重要介入和反事实问题。例如,在医学成像中,我们可能希望研究遗传,环境或生活方式因素对解剖表型正常和病理变异的因果关系。但是,尽管可以可靠地构建了从自动图像分割中提取的3D表面网格的解剖形状模型,但缺乏计算工具来实现有关形态变化的因果推理。为了解决这个问题,我们提出了深层结构性因果形状模型(CSM),该模型利用了高质量的网格生成技术,从几何深度学习,在深层结构性因果模型的表达框架内。 CSM可以通过反事实网格产生来实现特定于受试者的预后(“如果患者大十岁,该患者的大脑结构将如何变化?”),这与大多数当前有关纯粹人口级统计形状建模的作品形成鲜明对比。我们通过许多定性和定量实验利用了大量的3D脑结构数据集,证明了CSM在珍珠因果层次结构上的所有级别的能力。
Causal reasoning provides a language to ask important interventional and counterfactual questions beyond purely statistical association. In medical imaging, for example, we may want to study the causal effect of genetic, environmental, or lifestyle factors on the normal and pathological variation of anatomical phenotypes. However, while anatomical shape models of 3D surface meshes, extracted from automated image segmentation, can be reliably constructed, there is a lack of computational tooling to enable causal reasoning about morphological variations. To tackle this problem, we propose deep structural causal shape models (CSMs), which utilise high-quality mesh generation techniques, from geometric deep learning, within the expressive framework of deep structural causal models. CSMs enable subject-specific prognoses through counterfactual mesh generation ("How would this patient's brain structure change if they were ten years older?"), which is in contrast to most current works on purely population-level statistical shape modelling. We demonstrate the capabilities of CSMs at all levels of Pearl's causal hierarchy through a number of qualitative and quantitative experiments leveraging a large dataset of 3D brain structures.