论文标题
Nishimori的CAT:有限深入的单位和弱测量值稳定的远程纠缠
Nishimori's cat: stable long-range entanglement from finite-depth unitaries and weak measurements
论文作者
论文摘要
在受监视的量子电路领域中,是否仍然是一个空旷的问题,是否有限时间协议是否准备长时间纠缠状态导致物质的阶段,这些阶段可以稳定到门不完美的情况下,这可以将投影剂转换为弱测量值。在这里,我们表明,在某些情况下,在存在弱测量的情况下,远程纠缠持续存在,并引起新的量子关键形式。我们明确地证明了这一点,以准备二维Greenberger-Horne-Horne-Zeilinger Cat State和三维复合代码作为最小情况。与受监视的随机统一电路相反,与随机监控电路相比,我们的大门和测量电路是确定性的。唯一的随机性是测量结果。我们展示了这些弱测量值中的随机性如何使我们能够跟踪随机键入模型的可解决的nishimori线,并严格确定在两个和三个空间维度中玻璃状长距离纠缠状态的稳定性。远离这种确切的可解决的结构,我们使用混合张量网络和蒙特卡洛模拟来获得非零的爱德华兹 - 安德森订单参数,作为在二维场景中的远程纠缠的指标。我们认为,我们的协议承认在现有的量子计算体系结构中自然实现,只需要在IBM的Heex-Hexagon Transmon芯片上使用Depth-3电路。
In the field of monitored quantum circuits, it has remained an open question whether finite-time protocols for preparing long-range entangled states lead to phases of matter which are stable to gate imperfections, which can convert projective into weak measurements. Here we show that in certain cases, long-range entanglement persists in the presence of weak measurements, and gives rise to novel forms of quantum criticality. We demonstrate this explicitly for preparing the two-dimensional Greenberger-Horne-Zeilinger cat state and the three-dimensional toric code as minimal instances. In contrast to the monitored random unitary circuits, In contrast to random monitored circuits, our circuit of gates and measurements is deterministic; the only randomness is in the measurement outcomes. We show how the randomness in these weak measurements allows us to track the solvable Nishimori line of the random-bond Ising model, rigorously establishing the stability of the glassy long-range entangled states in two and three spatial dimensions. Away from this exactly solvable construction, we use hybrid tensor network and Monte Carlo simulations to obtain a nonzero Edwards-Anderson order parameter as an indicator of long-range entanglement in the two-dimensional scenario. We argue that our protocol admits a natural implementation in existing quantum computing architectures, requiring only a depth-3 circuit on IBM's heavy-hexagon transmon chips.