论文标题

使用随机森林识别模拟Ceer的nircam图像中的星系合并

Identifying Galaxy Mergers in Simulated CEERS NIRCam Images using Random Forests

论文作者

Rose, Caitlin, Kartaltepe, Jeyhan S., Snyder, Gregory F., Rodriguez-Gomez, Vicente, Yung, L. Y. Aaron, Haro, Pablo Arrabal, Bagley, Micaela B., Calabrò, Antonello, Cleri, Nikko J., Cooper, M. C., Costantin, Luca, Croton, Darren, Dickinson, Mark, Finkelstein, Steven L., Häußler, Boris, Holwerda, Benne W., Koekemoer, Anton M., Kurczynski, Peter, Lucas, Ray A., Mantha, Kameswara Bharadwaj, Papovich, Casey, Pérez-González, Pablo G., Pirzkal, Nor, Somerville, Rachel S., Straughn, Amber N., Tacchella, Sandro

论文摘要

识别合并星系是星系进化研究的重要一步。我们根据各种标准形态参数从模拟的JWST图像中介绍了星系合并的随机森林分类。我们描述了(a)从Illustristng和Santa Cruz Sam中构建模拟图像,并将它们修改为模仿未来的Ceers观察结果以及几乎无噪声的观察结果,(b)从这些图像中测量形态学参数,(c)使用来自IllustriStng的模拟星系的Merger历史信息来构建和训练随机森林的随机森林信息。随机森林正确地对非合并的$ \ sim60 \%$分类,并在$ 0.5 <z <4.0 $上合并星系。 REST框架不对称参数对于较低的红移合并分类似乎更为重要,而REST-FRAME BULGE和CLUMP参数对于更高的红移分类似乎更为重要。调整分类概率阈值不会改善森林的性能。最后,从随机森林分类得出的合并分数和合并率的形状和斜率与理论插图预测匹配,但被低估了$ \ sim 0.5 $。

Identifying merging galaxies is an important - but difficult - step in galaxy evolution studies. We present random forest classifications of galaxy mergers from simulated JWST images based on various standard morphological parameters. We describe (a) constructing the simulated images from IllustrisTNG and the Santa Cruz SAM, and modifying them to mimic future CEERS observations as well as nearly noiseless observations, (b) measuring morphological parameters from these images, and (c) constructing and training the random forests using the merger history information for the simulated galaxies available from IllustrisTNG. The random forests correctly classify $\sim60\%$ of non-merging and merging galaxies across $0.5 < z < 4.0$. Rest-frame asymmetry parameters appear more important for lower redshift merger classifications, while rest-frame bulge and clump parameters appear more important for higher redshift classifications. Adjusting the classification probability threshold does not improve the performance of the forests. Finally, the shape and slope of the resulting merger fraction and merger rate derived from the random forest classifications match with theoretical Illustris predictions, but are underestimated by a factor of $\sim 0.5$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源