论文标题
堆栈溢出帖子的各种标题生成,并具有多个采样增强的变压器
Diverse Title Generation for Stack Overflow Posts with Multiple Sampling Enhanced Transformer
论文作者
论文摘要
Stack Overflow是最受欢迎的编程社区之一,开发人员可以为他们遇到的问题寻求帮助。但是,如果没有经验的开发人员无法清楚地描述他们的问题,那么他们很难吸引足够的关注并获得预期的答案。我们提出了M $ _3 $ NSCT5,这是一种新颖的方法,可以自动从给定代码片段中生成多个帖子标题。开发人员可以使用生成的标题查找密切相关的帖子并完成其问题描述。 M $ _3 $ NSCT5使用Codet5骨干,这是一种具有出色语言理解和发电能力的预训练的变压器模型。为了减轻歧义问题,即在不同的环境下可以将相同的代码段与不同的标题保持一致,我们提出了最大的边缘多元核抽样策略,以一次产生多个高质量和不同的标题候选者,以便开发人员选择。我们构建了一个大规模数据集,其中包含890,000个问题帖子,其中涵盖了八种编程语言,以验证M $ _3 $ NSCT5的有效性。 BLEU和Rouge指标的自动评估结果表明,M $ _3 $ NSCT5的优势比六个最先进的基线模型。此外,具有值得信赖结果的人类评估也证明了我们在现实世界中使用的巨大潜力。
Stack Overflow is one of the most popular programming communities where developers can seek help for their encountered problems. Nevertheless, if inexperienced developers fail to describe their problems clearly, it is hard for them to attract sufficient attention and get the anticipated answers. We propose M$_3$NSCT5, a novel approach to automatically generate multiple post titles from the given code snippets. Developers may use the generated titles to find closely related posts and complete their problem descriptions. M$_3$NSCT5 employs the CodeT5 backbone, which is a pre-trained Transformer model having an excellent language understanding and generation ability. To alleviate the ambiguity issue that the same code snippets could be aligned with different titles under varying contexts, we propose the maximal marginal multiple nucleus sampling strategy to generate multiple high-quality and diverse title candidates at a time for the developers to choose from. We build a large-scale dataset with 890,000 question posts covering eight programming languages to validate the effectiveness of M$_3$NSCT5. The automatic evaluation results on the BLEU and ROUGE metrics demonstrate the superiority of M$_3$NSCT5 over six state-of-the-art baseline models. Moreover, a human evaluation with trustworthy results also demonstrates the great potential of our approach for real-world application.