论文标题
部分可观测时空混沌系统的无模型预测
Graphical Models of False Information and Fact Checking Ecosystems
论文作者
论文摘要
在网上进行的虚假信息广泛传播,包括错误信息和虚假信息已成为我们高度数字化和全球化社会的主要问题。已经进行了大量研究来更好地理解在线虚假信息的不同方面,例如不同参与者的行为和传播模式,以及使用技术和社会技术手段更好地检测和预防此类信息。在线检测和揭穿虚假信息的一种主要方法是使用人类事实检查器,这些事实检查器可以通过自动化工具来帮助。尽管进行了大量研究,但我们注意到缺乏描述错误信息和事实检查的复杂生态系统的概念模型存在很大的差距。在本文中,我们报告了此类生态系统的第一个图形模型,并在多种情况下在线上重点介绍虚假信息,包括传统的媒体和用户生成的内容。拟议的模型涵盖了广泛的实体类型和关系,可以成为研究人员和从业者在线研究虚假信息以及事实检查的效果的新有用工具。
The wide spread of false information online including misinformation and disinformation has become a major problem for our highly digitised and globalised society. A lot of research has been done to better understand different aspects of false information online such as behaviours of different actors and patterns of spreading, and also on better detection and prevention of such information using technical and socio-technical means. One major approach to detect and debunk false information online is to use human fact-checkers, who can be helped by automated tools. Despite a lot of research done, we noticed a significant gap on the lack of conceptual models describing the complicated ecosystems of false information and fact checking. In this paper, we report the first graphical models of such ecosystems, focusing on false information online in multiple contexts, including traditional media outlets and user-generated content. The proposed models cover a wide range of entity types and relationships, and can be a new useful tool for researchers and practitioners to study false information online and the effects of fact checking.