论文标题
耗时时间晶体与远程林金斯人
Dissipative time crystals with long-range Lindbladians
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Dissipative time crystals can appear in spin systems, when the $Z_2$ symmetry of the Hamiltonian is broken by the environment, and the square of total spin operator $S^2$ is conserved. In this manuscript, we relax the latter condition and show that time-translation-symmetry breaking collective oscillations persist, in the thermodynamic limit, even in the absence of spin symmetry. We engineer an \textit{ad hoc} Lindbladian using power-law decaying spin operators and show that time-translation symmetry breaking appears when the decay exponent obeys $0<η\leq 1$. This model shows a surprisingly rich phase diagram, including the time-crystal phase as well as first-order, second-order, and continuous transitions of the fixed points. We study the phase diagram and the magnetization dynamics in the mean-field approximation. We prove that this approximation is quantitatively accurate, when $0<η\leq1$ and the thermodynamic limit is taken, because the system does not develop sizable quantum fluctuations, if the Gaussian approximation is considered.