论文标题
在1-D哈伯德模型中,疾病诱导的自旋电荷分离
Disorder-induced spin-charge separation in the 1-D Hubbard model
论文作者
论文摘要
据信,在具有连续的非亚伯对称性的量子系统中,多体定位通常是不稳定的,即使在存在牢固的障碍的情况下也是如此。打破这些对称性可以稳定局部阶段,从而导致出现了大量的准分子保守数量,称为局部运动积分或$ l $ bit。使用基于连续统一变换的复杂的非扰动技术,我们研究了受旋转和电荷障碍的一维哈伯德模型,计算了相关的$ l $ bits,并证明了这种疾病会引起新型的自旋电荷分离形式。我们研究了对称性在定位自由度和电荷自由度中的作用,并表明,虽然对称性通常通过多粒子谐振过程导致定位,但某些状态的某些子集似乎稳定。
Many-body localisation is believed to be generically unstable in quantum systems with continuous non-Abelian symmetries, even in the presence of strong disorder. Breaking these symmetries can stabilise the localised phase, leading to the emergence of an extensive number of quasi-locally conserved quantities known as local integrals of motion, or $l$-bits. Using a sophisticated non-perturbative technique based on continuous unitary transforms, we investigate the one-dimensional Hubbard model subject to both spin and charge disorder, compute the associated $l$-bits and demonstrate that the disorder gives rise to a novel form of spin-charge separation. We examine the role of symmetries in delocalising the spin and charge degrees of freedom, and show that while symmetries generally lead to delocalisation through multi-particle resonant processes, certain subsets of states appear stable.