论文标题
no((N,K,D <127))代码可以违反量子锤绑定
No ((n, k, d < 127)) code can violate the quantum Hamming bound
论文作者
论文摘要
众所周知,纯量子误差校正代码(QECC)受到锤式结合的量子版本的约束。然而,不纯净的代码也遵守这种约束仍然是一个长期存在的问题,对QECC的功效具有实际意义。我们在QECC上采用了先前派生的界限的组合,以证明所有代码的子集必须遵守量子锤结合。具体而言,我们将由于降雨引起的分析结合与由于Li和Xing引起的数值结合,以表明NO((N,K,D <127))代码可以违反量子锤限制。
It is well-known that pure quantum error correcting codes (QECCs) are constrained by a quantum version of the Hamming bound. Whether impure codes also obey such a bound, however, remains a long-standing question with practical implications for the efficacy of QECCs. We employ a combination of previously derived bounds on QECCs to demonstrate that a subset of all codes must obey the quantum Hamming bound. Specifically, we combine an analytical bound due to Rains with a numerical bound due to Li and Xing to show that no ((n,k,d < 127)) code can violate the quantum Hamming bound.