论文标题
大规模MIMO系统中有效的CSI反馈机制的设计:使用经验数据的机器学习方法
Design of an Efficient CSI Feedback Mechanism in Massive MIMO Systems: A Machine Learning Approach using Empirical Data
论文作者
论文摘要
大规模多输入多输出(MMIMO)制度从空间多样性和多重增长中获得了好处,但要遵守精确的通道状态信息(CSI)的采集。在当前的通信体系结构中,下行链路CSI由用户设备(UE)通过专用的飞行员估算,然后送回GNODEB(GNB)。反馈信息被压缩,目的是减少空中开销。这种压缩增加了获得CSI的不准确性,从而降低了整体光谱效率。本文提出了一种基于计算廉价的机器学习(ML)的CSI反馈算法,该算法利用了双通道预测指标。所提出的方法可以适用于时间划分的双工(TDD)和频划分双工(FDD)系统,并且可以减少反馈开销并提高所获得的CSI准确性。为了观察真正的好处,我们使用德国斯图加特诺基亚校园记录的经验数据证明了拟议方法的性能。数值结果表明,与传统的CSI反馈机制相比,拟议方法在减少开销,最小化量化误差,提高频谱效率,余弦相似性和预编码增益方面的有效性。
Massive multiple-input multiple-output (mMIMO) regime reaps the benefits of spatial diversity and multiplexing gains, subject to precise channel state information (CSI) acquisition. In the current communication architecture, the downlink CSI is estimated by the user equipment (UE) via dedicated pilots and then fed back to the gNodeB (gNB). The feedback information is compressed with the goal of reducing over-the-air overhead. This compression increases the inaccuracy of acquired CSI, thus degrading the overall spectral efficiency. This paper proposes a computationally inexpensive machine learning (ML)-based CSI feedback algorithm, which exploits twin channel predictors. The proposed approach can work for both time-division duplex (TDD) and frequency-division duplex (FDD) systems, and it allows to reduce feedback overhead and improves the acquired CSI accuracy. To observe real benefits, we demonstrate the performance of the proposed approach using the empirical data recorded at the Nokia campus in Stuttgart, Germany. Numerical results show the effectiveness of the proposed approach in terms of reducing overhead, minimizing quantization errors, increasing spectral efficiency, cosine similarity, and precoding gain compared to the traditional CSI feedback mechanism.