论文标题
在低端行走:Lofar探索喘着粗气的水母星系的低频无线电发射
Walk on the Low Side: LOFAR explores the low-frequency radio emission of GASP jellyfish galaxies
论文作者
论文摘要
水母星系的特征是从其磁盘上延伸的剥离的星际介质长细丝,是研究RAM压力剥离结果的主要实验室。在无线电波长下,它们通常显示出超越恒星磁盘的单侧发射,并且相对于当前恒星形成速率的预期,无线电发射度过高。我们提出了Lofar两米Sky Sumple提供的新的144个MHz图像,以从GASP调查中为六个星系进行样本。这些星系的特征在于144 MHz($ 6-27 \ times10^{22} $ w hz $^{ - 1} $)的高全球发光度($ 6-27 \ times10^{22} $),而其持续的星形形成率则超过了。与$ \ sim $ 10 kpc相对应的无线电和H $α$图像的比较表明,两种排放量之间的次线性空间相关性,平均斜率$ k = 0.50 $。在他们的出色磁盘中,我们测量$ k = 0.77 $,它接近无线电阵型线性关系。我们推测,由于RAM压力,在这些水母星系中,宇宙射线的传输比在正常星系中更有效。无线电尾巴通常比磁盘具有更高的无线电对H $α$比率,因此我们建议无线电发射由从磁盘上剥离的电子增强。在所有星系中,在最后$ \ sim10^8 $ yr中,恒星形成率降低了因子$ \ leq10 $。观察到的无线电发射与过去的恒星形成是一致的,因此我们提出,最近的下降可能是其无线电亮度到明星形成率过高的原因。
Jellyfish galaxies, characterized by long filaments of stripped interstellar medium extending from their disks, are the prime laboratories to study the outcomes of ram pressure stripping. At radio wavelengths, they often show unilateral emission extending beyond the stellar disk, and an excess of radio luminosity with respect to that expected from their current star formation rate. We present new 144 MHz images provided by the LOFAR Two-metre Sky Survey for a sample of six galaxies from the GASP survey. These galaxies are characterized by a high global luminosity at 144 MHz ($6-27\times10^{22}$ W Hz$^{-1}$), in excess compared to their ongoing star formation rate. The comparison of radio and H$α$ images smoothed with a Gaussian beam corresponding to $\sim$10 kpc reveals a sub-linear spatial correlation between the two emissions with an average slope $k=0.50$. In their stellar disk we measure $k=0.77$, which is close to the radio-to-star formation linear relation. We speculate that, as a consequence of the ram pressure, in these jellyfish galaxies the cosmic rays transport is more efficient than in normal galaxies. Radio tails typically have higher radio-to-H$α$ ratios than the disks, thus we suggest that the radio emission is boosted by the electrons stripped from the disks. In all galaxies, the star formation rate has decreased by a factor $\leq10$ within the last $\sim10^8$ yr. The observed radio emission is consistent with the past star formation, so we propose that this recent decline may be the cause of their radio luminosity-to-star formation rate excess.