论文标题
在置信区间以进行精确矩阵和协方差矩阵的特征组成
On confidence intervals for precision matrices and the eigendecomposition of covariance matrices
论文作者
论文摘要
矩阵的特征分类是基于基质分解的概率模型中的中心过程,例如主成分分析和主题模型。基于有限样本估计的这种分解的不确定性对于使用此类模型时的不确定性是必不可少的。本文解决了计算固定维度协方差矩阵特征向量各个条目中计算置信度界限的挑战。此外,我们得出了一种方法来绑定逆协方差矩阵的条目,即所谓的精确矩阵。我们方法背后的假设是最小的,要求存在协方差矩阵,其经验估计器会收敛到真正的协方差。我们利用U统计理论来绑定经验协方差矩阵的$ L_2 $扰动。从此结果,我们使用Weyl定理和特征值 - 元素向量身份获得了特征向量的边界,并使用矩阵扰动界限在精度矩阵的条目上得出置信区间。作为这些结果的应用,我们演示了一项新的统计测试,这使我们能够测试精度矩阵的非零值。我们将该测试与众所周知的Fisher-Z检验进行了比较,并证明了所提出的统计测试的健全性和可扩展性,及其应用于医疗和物理领域的实际数据。
The eigendecomposition of a matrix is the central procedure in probabilistic models based on matrix factorization, for instance principal component analysis and topic models. Quantifying the uncertainty of such a decomposition based on a finite sample estimate is essential to reasoning under uncertainty when employing such models. This paper tackles the challenge of computing confidence bounds on the individual entries of eigenvectors of a covariance matrix of fixed dimension. Moreover, we derive a method to bound the entries of the inverse covariance matrix, the so-called precision matrix. The assumptions behind our method are minimal and require that the covariance matrix exists, and its empirical estimator converges to the true covariance. We make use of the theory of U-statistics to bound the $L_2$ perturbation of the empirical covariance matrix. From this result, we obtain bounds on the eigenvectors using Weyl's theorem and the eigenvalue-eigenvector identity and we derive confidence intervals on the entries of the precision matrix using matrix inversion perturbation bounds. As an application of these results, we demonstrate a new statistical test, which allows us to test for non-zero values of the precision matrix. We compare this test to the well-known Fisher-z test for partial correlations, and demonstrate the soundness and scalability of the proposed statistical test, as well as its application to real-world data from medical and physics domains.