论文标题

与原子在化学键中行走:使用量子相变的透视图

Walking with the atoms in a chemical bond : A perspective using quantum phase transition

论文作者

Kais, Sabre

论文摘要

经典的相变(如固液气)或订购式自旋磁相,都通过改变温度来驱动热能波动。另一方面,量子相变发生在绝对零温度下发生,量子波动会导致基态能量显示突然变化,因为一个系统参数(例如电子密度,压力,压力,混乱或外部磁场)。相变于控制参数的临界值,例如经典相变的临界温度,以及量子情况下的系统临界参数。但是,当粒子数量以恒定密度为无穷大时,真正的关键性仅在热力学极限下发生。为了执行关键参数的计算,开发了有限尺寸缩放方法,以将信息从有限系统推断为热力学极限。随着超冷系统领域的实验和理论工作的进步,尤其是捕获和控制单个原子和分子系统,人们可以问:有限的系统是否表现出量子相变?为了解决这个问题,开发了有限系统的有限尺寸缩放来计算量子关键参数。在保罗陷阱中,在一个被困的171 yb离子中对量子相变的最新观察表明,有限系统中量子相变的可能性。该视角侧重于在超低温度下研究化学过程,尤其是化学键的形成和解离,这是理解整个化学的基本过程

Classical phase transitions, like solid-liquid-gas or order-disorder spin magnetic phases, are all driven by thermal energy fluctuations by varying the temperature. On the other hand, quantum phase transitions happen at absolute zero temperature with quantum fluctuations causing the ground state energy to show abrupt changes as one varies the system parameters like electron density, pressure, disorder, or external magnetic field. Phase transitions happen at critical values of the controlling parameters, such as the critical temperature in classical phase transitions, and system critical parameters in the quantum case. However, true criticality happens only at the thermodynamic limit, when the number of particles goes to infinity with constant density. To perform the calculations for the critical parameters, finite size scaling approach was developed to extrapolate information from a finite system to the thermodynamic limit. With the advancement in the experimental and theoretical work in the field of ultra-cold systems, particularly trapping and controlling single atomic and molecular systems, one can ask: do finite systems exhibit quantum phase transition? To address this question, finite size scaling for finite system was developed to calculate the quantum critical parameters. Recent observation of a quantum phase transition in a single trapped 171 Yb ion in the Paul trap indicates the possibility of quantum phase transition in finite systems. This perspective focuses on examining chemical processes at ultracold temperature as quantum phase transitions, particularly the formation and dissociation of chemical bonds, which is the basic process for understanding the whole of chemistry

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源