论文标题

UG2+挑战2022的第二名解决方案-D $^{3} $ net用于减轻图像的大气湍流

2nd Place Solutions for UG2+ Challenge 2022 -- D$^{3}$Net for Mitigating Atmospheric Turbulence from Images

论文作者

Khowaja, Sunder Ali, Lee, Ik Hyun, Yoon, Jiseok

论文摘要

该技术报告简要介绍了我们的团队“ tuk-iklab”提出的D $^{3} $网络,以减轻$ ug2^{+} $挑战的大气湍流2022。根据测试和验证结果,鉴于对文本识别性能和图像的验证,可以提出建议的效果,以提高建议,以提高您的建议,以提高您的建议。此外,我们还提供了与拟议工作的公开可用的DeNoising,Deblurring和框架平均方法的视觉比较。所提出的方法分别在测试阶段的上述挑战的最终领导板上排名第二。

This technical report briefly introduces to the D$^{3}$Net proposed by our team "TUK-IKLAB" for Atmospheric Turbulence Mitigation in $UG2^{+}$ Challenge at CVPR 2022. In the light of test and validation results on textual images to improve text recognition performance and hot-air balloon images for image enhancement, we can say that the proposed method achieves state-of-the-art performance. Furthermore, we also provide a visual comparison with publicly available denoising, deblurring, and frame averaging methods with respect to the proposed work. The proposed method ranked 2nd on the final leader-board of the aforementioned challenge in the testing phase, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源