论文标题
将单个纳米颗粒的精确转移到单个光子纳米结构上
Accurate Transfer of Individual Nanoparticles onto Single Photonic Nanostructures
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Controlled integration of metallic nanoparticles (NPs) onto photonic nanostructures enables realization of complex devices for extreme light confinement and enhanced light-matter interaction. This can be achieved combining Nanoparticle-on-Mirror (NPoM) nanocavities with the light manipulation capabilities of micron-scale metallic antennas and/or photonic integrated waveguides. However, metallic nanoparticles are usually deposited via drop-casting, which prevents their accurate positioning. Here we present a methodology for precise transfer and positioning of individual NPs onto different photonic nanostructures. The method is based on soft lithography printing that employs elastomeric stamp-assisted transfer of individual NPs onto a single nanostructure. It can also parallel imprint many individual NPs with high throughput and accuracy in a single step. Raman spectroscopy confirms enhanced light-matter interactions in the resulting NPoM-based devices. Our method mixes top-down and bottom-up nanofabrication techniques and shows the potential of building complex photonic nanodevices for applications ranging from enhanced sensing and spectroscopy to signal processing.