论文标题
采矿音频和文本对的有效性,用于改善低资源语言的ASR系统的公共数据
Effectiveness of Mining Audio and Text Pairs from Public Data for Improving ASR Systems for Low-Resource Languages
论文作者
论文摘要
端到端(E2E)模型已成为最新语音识别系统的默认选择。此类模型经过大量标记数据的培训,这些数据通常不适合低资源语言。诸如自我监督学习和转移学习的诺言之类的技术尚未在培训准确的模型中有效。另一方面,在各种域和扬声器集中收集标记的数据集非常昂贵。在这项工作中,我们通过公共资料中的印度语言,特别是来自印度广播电台的公共档案馆的印度语言,通过``采矿''文本和音频对展示了这些方法的廉价有效替代方案。作为关键组件,我们将Needleman-Wunsch算法调整以使句子与相应的音频段对齐句子,并给定长音频和其成绩单的PDF,同时由于OCR,无关紧要的文本和未转录的语音而对错误进行了强大的错误。因此,我们创建了Shrutilipi,这是一个数据集,其中包含超过6400个小时的标记音频,总计为495万个句子。平均而言,Shrutilipi导致2.3倍增加了公开可用的标签数据。我们在12种语言中与21种人类评估者建立了Shrutilipi的质量。我们还根据代表区域,说话者和提到的实体建立了Shrutilipi的多样性。值得注意的是,我们表明,将Shrutilipi添加到WAV2VEC模型的训练集中,导致在Indicsuperb基准上的7种语言中平均降低5.8 \%。对于具有最多基准的印地语(7),平均水平从18.8%下降到13.5%。这种改进扩展到有效的模型:对于构象异构体模型(比WAV2VEC小10倍),我们显示出2.3%的下降。最后,我们通过证明接受过训练的模型对嘈杂的输入更强大,证明了Shrutilipi的多样性。
End-to-end (E2E) models have become the default choice for state-of-the-art speech recognition systems. Such models are trained on large amounts of labelled data, which are often not available for low-resource languages. Techniques such as self-supervised learning and transfer learning hold promise, but have not yet been effective in training accurate models. On the other hand, collecting labelled datasets on a diverse set of domains and speakers is very expensive. In this work, we demonstrate an inexpensive and effective alternative to these approaches by ``mining'' text and audio pairs for Indian languages from public sources, specifically from the public archives of All India Radio. As a key component, we adapt the Needleman-Wunsch algorithm to align sentences with corresponding audio segments given a long audio and a PDF of its transcript, while being robust to errors due to OCR, extraneous text, and non-transcribed speech. We thus create Shrutilipi, a dataset which contains over 6,400 hours of labelled audio across 12 Indian languages totalling to 4.95M sentences. On average, Shrutilipi results in a 2.3x increase over publicly available labelled data. We establish the quality of Shrutilipi with 21 human evaluators across the 12 languages. We also establish the diversity of Shrutilipi in terms of represented regions, speakers, and mentioned named entities. Significantly, we show that adding Shrutilipi to the training set of Wav2Vec models leads to an average decrease in WER of 5.8\% for 7 languages on the IndicSUPERB benchmark. For Hindi, which has the most benchmarks (7), the average WER falls from 18.8% to 13.5%. This improvement extends to efficient models: We show a 2.3% drop in WER for a Conformer model (10x smaller than Wav2Vec). Finally, we demonstrate the diversity of Shrutilipi by showing that the model trained with it is more robust to noisy input.