论文标题
kantorovich变体$α$ -schurer运营商的混合类型近似值
Blending type Approximations by Kantorovich variant of $α$-Schurer operators
论文作者
论文摘要
在目前的手稿中,我们提出了一个新的运营商序列,即$,$α$ -Bernstein-Schurer-Schorer-Kantorovich运营商,具体取决于两个参数$α\ in [0,1] $和$ρ> 0 $ in [0,1]和$ρ> 0 $,对于一个和两个变量,一个和两个变量可在$ [0:1+q],q> 0 $ q],q> 0 $ qumite y Mative y Mustalable功能。接下来,我们给出基本的结果,并讨论这些序列在其各个部分中单变量和双变量的收敛和近似顺序的迅速。此外,还提供了图形和数值分析。此外,讨论了局部和全局近似属性,以平滑度的第一和二阶模量,PEETRE在不同函数空间中的这些序列的K官能功能和权重函数来讨论。
In the present manuscript, we present a new sequence of operators, $i.e.$, $α$-Bernstein-Schurer-Kantorovich operators depending on two parameters $α\in[0,1]$ and $ρ>0$ for one and two variables to approximate measurable functions on $[0: 1+q], q>0$. Next, we give basic results and discuss the rapidity of convergence and order of approximation for univariate and bivariate of these sequences in their respective sections. Further, Graphical and numerical analysis are presented. Moreover, local and global approximation properties are discussed in terms of first and second order modulus of smoothness, Peetre's K-functional and weight functions for these sequences in different spaces of functions.