论文标题

riesz-quincunx-unet变异自动编码器,用于卫星图像denoising

Riesz-Quincunx-UNet Variational Auto-Encoder for Satellite Image Denoising

论文作者

Thai, Duy H., Fei, Xiqi, Le, Minh Tri, Züfle, Andreas, Wessels, Konrad

论文摘要

多分辨率深度学习方法(例如U-NET体系结构)在分类和分割图像中已经达到了高性能。但是,这些方法没有提供潜在的图像表示形式,也不能用于分解,denoise和重建图像数据。 U-NET和其他卷积神经网络(CNN)通常使用合并来扩大接受场,这通常会导致不可逆的信息丢失。这项研究建议包括riesz-quincunx(RQ)小波变换,结合了1)高阶Riesz小波变换和2)在U-NET体系结构内部的正交Quincunx小波(两者都用于减少医学图像中的模糊图),以减少卫星图像中的噪声及其时间及其时间群。在变换的特征空间中,我们提出了一种变异方法,以了解特征的随机扰动如何影响图像以进一步降低噪声。结合了两种方法,我们引入了一种混合Rqunet-VAE方案,用于图像和时间序列分解,用于减少卫星图像中的噪声。我们提出了定性和定量的实验结果,这表明与其他最先进的方法相比,我们提出的Rqunet-VAE在降低卫星图像中的噪声方面更有效。我们还将我们的方案应用于多波段卫星图像的几个应用程序,包括:图像denoising,图像和时间序列通过扩散和图像分割分解。

Multiresolution deep learning approaches, such as the U-Net architecture, have achieved high performance in classifying and segmenting images. However, these approaches do not provide a latent image representation and cannot be used to decompose, denoise, and reconstruct image data. The U-Net and other convolutional neural network (CNNs) architectures commonly use pooling to enlarge the receptive field, which usually results in irreversible information loss. This study proposes to include a Riesz-Quincunx (RQ) wavelet transform, which combines 1) higher-order Riesz wavelet transform and 2) orthogonal Quincunx wavelets (which have both been used to reduce blur in medical images) inside the U-net architecture, to reduce noise in satellite images and their time-series. In the transformed feature space, we propose a variational approach to understand how random perturbations of the features affect the image to further reduce noise. Combining both approaches, we introduce a hybrid RQUNet-VAE scheme for image and time series decomposition used to reduce noise in satellite imagery. We present qualitative and quantitative experimental results that demonstrate that our proposed RQUNet-VAE was more effective at reducing noise in satellite imagery compared to other state-of-the-art methods. We also apply our scheme to several applications for multi-band satellite images, including: image denoising, image and time-series decomposition by diffusion and image segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源