论文标题

通过图神经网络揭示矮星系中的暗物质密度曲线

Uncovering dark matter density profiles in dwarf galaxies with graph neural networks

论文作者

Nguyen, Tri, Mishra-Sharma, Siddharth, Williams, Reuel, Necib, Lina

论文摘要

矮星系是小的,以暗物质为主导的星系,其中一些嵌入了银河系中。它们缺乏重型物质(例如,恒星和气体)使它们成为探测暗物质特性的完美测试床 - 了解这些系统中的空间暗物质分布可用于限制影响我们宇宙中结构形成和演化的微物理暗物质相互作用。我们引入了一种新方法,该方法利用基于模拟的推理和基于图的机器学习,以推断出恒星的可观察到的恒星重力与这些系统结合的可观察到的矮星系的暗物质密度曲线。我们的方法旨在解决基于动态牛仔裤建模的已建立方法的一些局限性。我们表明,这种新颖的方法可以对暗物质概况施加更强的约束,因此,有可能权衡与暗物质晕圈小规模结构(例如Core-Cusp差异)相关的一些持续的难题。

Dwarf galaxies are small, dark matter-dominated galaxies, some of which are embedded within the Milky Way. Their lack of baryonic matter (e.g., stars and gas) makes them perfect test beds for probing the properties of dark matter -- understanding the spatial dark matter distribution in these systems can be used to constrain microphysical dark matter interactions that influence the formation and evolution of structures in our Universe. We introduce a new method that leverages simulation-based inference and graph-based machine learning in order to infer the dark matter density profiles of dwarf galaxies from observable kinematics of stars gravitationally bound to these systems. Our approach aims to address some of the limitations of established methods based on dynamical Jeans modeling. We show that this novel method can place stronger constraints on dark matter profiles and, consequently, has the potential to weigh in on some of the ongoing puzzles associated with the small-scale structure of dark matter halos, such as the core-cusp discrepancy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源