论文标题
评估哈勃常数的无声层测定的鲁棒性
Assessing the robustness of sound horizon-free determinations of the Hubble constant
论文作者
论文摘要
可以通过在重组之前修改声音范围($ r_s $)来解决哈勃张力,从而触发$ r_s $ - $ r_s $ - 免费的早期宇宙估计值的利息,$ h_0 $。最近,最近报道了LCDM内的$ r_s $ free分析$ r_s $ free分析$ h_0 $的限制,并用来评论LCDM以外的物理的可行性。在这里,我们证明了具有当前数据的$ R_S $ FREE分析取决于模型,并且将其放置在宇宙学参数上,因此LCDM分析不能用作新物理学或反对新物理学的证据。我们发现,超越LCDM模型引入了具有大量压力支持的额外能量密度,例如早期的暗能量(EDE)或其他中微子能量密度($Δn_{\ rm eff} $),导致$ H_0 $的较大值。另一方面,仅影响重组时间的模型,例如不同的电子质量($Δm_e$),会产生与LCDM相似的$ H_0 $约束。 Using BOSS data, constraints from light element abundances, cosmic microwave background (CMB) lensing, a CMB-based prior on the scalar amplitude ($A_s$), spectral index ($n_s$), and $Ω_m$ from the Pantheon+ supernovae data set, we find that in LCDM, $H_0=64.9\pm 2.2$ km/s/Mpc; ede,$ h_0 = 68.7^{+3} _ { - 3.9} $; $Δn_ {\ rm eff} $,$ h_0 = 68.1^{+2.7} _ { - 3.8} $; $Δm_e$,$ h_0 = 64.7^{+1.9} _ { - 2.3} $。使用未校准的BAO和投影声层的CMB测量的$ω_m$上的先验,这些值在LCDM中,$ H_0 = 68.8^{+1.8} _ { - 2.1} $; Ede,$ H_0 = 73.7^{+3.2} _ { - 3.9} $; $Δn_ {\ rm eff} $,$ h_0 = 72.6^{+2.8} _ { - 3.7} $; $Δm_e$,$ h_0 = 68.8 \ pm 1.9 $。有了当前的数据,没有一个模型与SH0ES显着张力,并且基于有或没有$ R_S $边缘化的$ H_0 $后代的一致性测试对于超越LCDM型号的可行性而言尚无定论。
The Hubble tension can be addressed by modifying the sound horizon ($r_s$) before recombination, triggering interest in $r_s$-free early-universe estimates of the Hubble constant, $H_0$. Constraints on $H_0$ from an $r_s$-free analysis of the full shape BOSS galaxy power spectra within LCDM were recently reported and used to comment on the viability of physics beyond LCDM. Here we demonstrate that $r_s$-free analyses with current data depend on the model and the priors placed on the cosmological parameters, such that LCDM analyses cannot be used as evidence for or against new physics. We find that beyond-LCDM models which introduce additional energy density with significant pressure support, such as early dark energy (EDE) or additional neutrino energy density ($ΔN_{\rm eff}$), lead to larger values of $H_0$. On the other hand, models which only affect the time of recombination, such as a varying electron mass ($Δm_e$), produce $H_0$ constraints similar to LCDM. Using BOSS data, constraints from light element abundances, cosmic microwave background (CMB) lensing, a CMB-based prior on the scalar amplitude ($A_s$), spectral index ($n_s$), and $Ω_m$ from the Pantheon+ supernovae data set, we find that in LCDM, $H_0=64.9\pm 2.2$ km/s/Mpc; EDE, $H_0=68.7^{+3}_{-3.9}$; $ΔN_{\rm eff}$, $H_0=68.1^{+2.7}_{-3.8}$; $Δm_e$, $H_0=64.7^{+1.9}_{-2.3}$. Using a prior on $Ω_m$ from uncalibrated BAO and CMB measurements of the projected sound horizon, these values become in LCDM, $H_0=68.8^{+1.8}_{-2.1}$; EDE, $H_0=73.7^{+3.2}_{-3.9}$; $ΔN_{\rm eff}$, $H_0=72.6^{+2.8}_{-3.7}$; $Δm_e$, $H_0=68.8\pm 1.9$. With current data, none of the models are in significant tension with SH0ES, and consistency tests based on comparing $H_0$ posteriors with and without $r_s$ marginalization are inconclusive with respect to the viability of beyond LCDM models.