论文标题

随机图中的拉姆西数量

Ramsey numbers of cycles in random graphs

论文作者

Araújo, Pedro, Pavez-Signé, Matías, Sanhueza-Matamala, Nicolás

论文摘要

令$ r(c_n)$为$ n $顶点上的循环的拉姆齐号。我们证明,对于$ c> 0 $,只要$ g(n,p)$的边缘每$ 2 $颜色的概率高,只要$ n \ geq r(c_n) + c/p $和$ p \ egq c/n $。这是$ C $的敏锐价值,它改善了莱茨特和克里维尔维奇,克罗伦贝格和蒙德的结果。

Let $R(C_n)$ be the Ramsey number of the cycle on $n$ vertices. We prove that, for some $C > 0$, with high probability every $2$-colouring of the edges of $G(N,p)$ has a monochromatic copy of $C_n$, as long as $N\geq R(C_n) + C/p$ and $p \geq C/n$. This is sharp up to the value of $C$ and it improves results of Letzter and of Krivelevich, Kronenberg and Mond.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源