论文标题

多消息私人信息检索:标量线性解决方案

Multi-Message Private Information Retrieval: A Scalar Linear Solution

论文作者

Wang, Ningze, Heidarzadeh, Anoosheh, Sprintson, Alex

论文摘要

近年来,多媒体私人信息检索(MPIR)问题受到了研究界的极大关注。在此问题中,用户想私下检索$ k $消息的$ d $消息,其相同副本存储在$ n $远程服务器上,同时最大化下载率。 Mpir计划可以在许多实际情况下找到应用程序,并可以作为私人计算和私人机器学习应用程序的重要组成部分。现有的MPIR解决方案需要大量的子包装,这可能会导致大开销,高复杂性并对系统参数施加限制。这些因素可以限制现有解决方案的实际应用。在本文中,我们介绍了标量线性Mpir方案设计的方法。这样的方案在实用系统中易于实现,因为它们不需要将消息分配为较小的子消息,并且不会对消息的最小要求大小施加任何约束。为了关注$ n = d+1 $的情况,我们表明,当$ d $ dive $ k $时,我们的计划可实现容量,其中容量定义为最大可实现的下载率。当划分条件无法保持时,与需要高度子包装的最知名方案相比,我们的方案的性能是相同的或在较小的添加剂边缘之内。

In recent years, the Multi-message Private Information Retrieval (MPIR) problem has received significant attention from the research community. In this problem, a user wants to privately retrieve $D$ messages out of $K$ messages whose identical copies are stored on $N$ remote servers, while maximizing the download rate. The MPIR schemes can find applications in many practical scenarios and can serve as an important building block for private computation and private machine learning applications. The existing solutions for MPIR require a large degree of subpacketization, which can result in large overheads, high complexity, and impose constraints on the system parameters. These factors can limit practical applications of the existing solutions. In this paper, we present a methodology for the design of scalar-linear MPIR schemes. Such schemes are easy to implement in practical systems as they do not require partitioning of messages into smaller size sub-messages and do not impose any constraints on the minimum required size of the messages. Focusing on the case of $N=D+1$, we show that when $D$ divides $K$, our scheme achieves the capacity, where the capacity is defined as the maximum achievable download rate. When the divisibility condition does not hold, the performance of our scheme is the same or within a small additive margin compared to the best known scheme that requires a high degree of subpacketization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源