论文标题

Light-Yolov5:一种在复杂的火灾方案中改进Yolov5的轻量级算法

Light-YOLOv5: A Lightweight Algorithm for Improved YOLOv5 in Complex Fire Scenarios

论文作者

Xu, Hao, Li, Bo, Zhong, Fei

论文摘要

对于成功预防措施,火灾检测技术非常重要。基于图像的火灾检测是一种有效的方法。目前,当对象检测算法将其应用于复杂的火灾方案时,将它们应用于检测速度和准确性任务。在这项研究中,提出了一种轻巧的火灾检测算法,Light-Yolov5(您只看一次版本第五版)。首先,使用可分离的视觉变压器(SEPVIT)块用于替换骨干网络最后一层中的几个C3模块,以增强骨干网络与全局成型的接触以及火焰和烟雾特征的提取;其次,轻型双向特征金字塔网络(Light-BIFPN)旨在减轻模型,同时在火灾检测过程中改善特征提取,平衡速度和准确性。第三,将全球注意机制(GAM)融合到网络中,以使模型更多地关注全球维度特征,并进一步提高模型的检测准确性。最后,使用Mish的激活函数和SIOU损失可以同时提高收敛速度并提高精度。实验结果表明,与原始算法相比,光 - Yolov5的平均平均准确性(MAP)增加了3.3%,参数数量减少了27.1%,浮点操作(Flops)降低了19.1%。检测速度达到91.1 fps,可以实时在复杂的火灾方案中检测目标。

Fire-detection technology is of great importance for successful fire-prevention measures. Image-based fire detection is one effective method. At present, object-detection algorithms are deficient in performing detection speed and accuracy tasks when they are applied in complex fire scenarios. In this study, a lightweight fire-detection algorithm, Light-YOLOv5 (You Only Look Once version five), is presented. First, a separable vision transformer (SepViT) block is used to replace several C3 modules in the final layer of a backbone network to enhance both the contact of the backbone network to global in-formation and the extraction of flame and smoke features; second, a light bidirectional feature pyramid network (Light-BiFPN) is designed to lighten the model while improving the feature extraction and balancing speed and accuracy features during a fire-detection procedure; third, a global attention mechanism (GAM) is fused into the network to cause the model to focus more on the global dimensional features and further improve the detection accuracy of the model; and finally, the Mish activation function and SIoU loss are utilized to simultaneously increase the convergence speed and enhance the accuracy. The experimental results show that compared to the original algorithm, the mean average accuracy (mAP) of Light-YOLOv5 increases by 3.3%, the number of parameters decreases by 27.1%, and the floating point operations (FLOPs) decrease by 19.1%. The detection speed reaches 91.1 FPS, which can detect targets in complex fire scenarios in real time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源