论文标题

对多项式生长图和准树的第一次通过渗透的严格单调性

Strict monotonicity for first passage percolation on graphs of polynomial growth and quasi-trees

论文作者

Gorski, Christian

论文摘要

在1993年,范·登·伯格(Van den Berg)和凯斯滕(Kesten)在$ \ mathbb {z}^d $,$ d \ ge 2 $上的第一次段落渗透是一个严格的单调定理$ \tildeν$严格小于与$ν$相关的时间常数。在本文中,一个类似的结果被证明是严格多项式生长的(不一定是几乎传播的)图(几乎是传播的)图和有界度图的准图表与树木的准代表,这些树木满足了我们称为“接纳弯路”的某种几何条件。还证明,如果有界度图不接受弯路,那么关于可变性的如此严格的单调定理就无法保持。显示了大量的图表可以接受弯路,我们得出的结论是,任何实际上是nilpotent群体的cayley图,这对$ \ mathbb {z} $的标准cayley图并不同构,这对可变性的可变性很严格,这是$ f \ rtime f _ $ f_ $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f》中。 此外,事实证明,对于严格的多项式生长和有界程度图的图表,如果从适当的意义上讲,重量度量是亚临界的,那么“相对于地球测量的预期经验度量,它绝对是连续的。”这意味着对措施的随机支配(无论该图是否允许绕道),这是严格的单调性定理。

In 1993 van den Berg and Kesten proved a strict monotonicity theorem for first passage percolation on $\mathbb{Z}^d$, $d \ge 2$: given two probability measures $ν$ and $\tildeν$ with finite mean, if $\tildeν$ is strictly more variable than $ν$ and $ν$ is subcritical in an appropriate sense, the time constant associated to $\tildeν$ is strictly smaller than the time constant associated to $ν$. In this paper, an analogous result is proven for (not necessarily almost-transitive) graphs of strict polynomial growth and for bounded degree graphs quasi-isometric to trees which satisfy a certain geometric condition we call "admitting detours." It is also proven that if a bounded degree graph does not admit detours, then such a strict monotonicity theorem with respect to variability cannot hold. Large classes of graphs are shown to admit detours, and we conclude that for example any Cayley graph of a virtually nilpotent group which is not isomorphic to the standard Cayley graph of $\mathbb{Z}$ satisfies strict monotonicity with respect to variability, as does any Cayley graph of $F \rtimes F_k$, $F$ a nontrivial finite group and $F_k$ a free group. Moreover, it is proven that for graphs of strict polynomial growth and bounded degree graphs quasi-isometric to trees, if the weight measure is subcritical in an appropriate sense, then it is "absolutely continuous with respect to the expected empirical measure of the geodesic." This implies a strict monotonicity theorem with respect to stochastic domination of measures, whether or not the graph admits detours.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源