论文标题

稳定,分解和denoise:自我监督的荧光镜检查

Stabilize, Decompose, and Denoise: Self-Supervised Fluoroscopy Denoising

论文作者

Liu, Ruizhou, Ma, Qiang, Cheng, Zhiwei, Lyu, Yuanyuan, Wang, Jianji, Zhou, S. Kevin

论文摘要

荧光镜检查是一种使用X射线获得3D物体内部的实时2D视频的成像技术,可帮助外科医生观察病理结构和组织功能,尤其是在干预过程中。但是,它主要是由于低剂量X射线的临床使用而产生的,因此需要荧光镜检查技术。这种脱糖性受到成像对象与X射线成像系统之间的相对运动的挑战。我们通过提出一个自我监督的三阶段框架来解决这一挑战,该框架利用了荧光镜检查的领域知识。 (i)稳定:我们首先基于光流计算构建动态全景,以稳定X射线检测器的运动引起的非平稳背景。 (ii)分解:然后,我们提出了一种新型的基于掩模的鲁棒原理分析(RPCA)分解方法,以将探测器运动的视频分离为低级背景和稀疏前景。这样的分解可容纳专家的阅读习惯。 (iii)denoise:我们终于通过自我监管的学习策略分别降低了背景和前景,并通过双侧时空滤波器融合了deno的部分。为了评估我们工作的有效性,我们策划了27个视频(1,568帧)和相应的地面真相的专用荧光镜数据集。我们的实验表明,与标准方法相比,它在降解和增强效果方面取得了重大改进。最后,专家评级证实了这一功效。

Fluoroscopy is an imaging technique that uses X-ray to obtain a real-time 2D video of the interior of a 3D object, helping surgeons to observe pathological structures and tissue functions especially during intervention. However, it suffers from heavy noise that mainly arises from the clinical use of a low dose X-ray, thereby necessitating the technology of fluoroscopy denoising. Such denoising is challenged by the relative motion between the object being imaged and the X-ray imaging system. We tackle this challenge by proposing a self-supervised, three-stage framework that exploits the domain knowledge of fluoroscopy imaging. (i) Stabilize: we first construct a dynamic panorama based on optical flow calculation to stabilize the non-stationary background induced by the motion of the X-ray detector. (ii) Decompose: we then propose a novel mask-based Robust Principle Component Analysis (RPCA) decomposition method to separate a video with detector motion into a low-rank background and a sparse foreground. Such a decomposition accommodates the reading habit of experts. (iii) Denoise: we finally denoise the background and foreground separately by a self-supervised learning strategy and fuse the denoised parts into the final output via a bilateral, spatiotemporal filter. To assess the effectiveness of our work, we curate a dedicated fluoroscopy dataset of 27 videos (1,568 frames) and corresponding ground truth. Our experiments demonstrate that it achieves significant improvements in terms of denoising and enhancement effects when compared with standard approaches. Finally, expert rating confirms this efficacy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源