论文标题
分布式约束耦合优化对有损网络
Distributed Constraint-Coupled Optimization over Lossy Networks
论文作者
论文摘要
本文考虑了分布式资源分配和保存汇总的限制优化在有损网络上,在这些网络中,这些链接不可靠,并且会受到数据包下降。我们定义条件,以确保数据包下降下的收敛并通过关注分配算法的两个主要特性来确保链接去除:(i)典型共识方案中的重量故事条件减少到平衡的权重,而无需重新调整权重以满足随机性。 (ii)该算法不需要历史连接性,而是在某些非重叠有限的时间间隔上均匀的连接性。首先,我们证明我们的算法在每个迭代步骤中都提供原始的可行分配,并在条件(i) - (ii)和非线性迭代动力学的其他一些轻度条件下收敛。这些非线性解决了由于饱和度或量化等,在实际应用中可能存在的实际约束。然后,使用(i) - (ii)和键 - 渗透理论的概念,我们将数据包下降速率和网络渗透阈值与(有限的)迭代次数相关联,以确保连通性均匀连接,从而融合了最佳值。
This paper considers distributed resource allocation and sum-preserving constrained optimization over lossy networks, where the links are unreliable and subject to packet drops. We define the conditions to ensure convergence under packet drops and link removal by focusing on two main properties of our allocation algorithm: (i) The weight-stochastic condition in typical consensus schemes is reduced to balanced weights, with no need for readjusting the weights to satisfy stochasticity. (ii) The algorithm does not require all-time connectivity but instead uniform connectivity over some non-overlapping finite time intervals. First, we prove that our algorithm provides primal-feasible allocation at every iteration step and converges under the conditions (i)-(ii) and some other mild conditions on the nonlinear iterative dynamics. These nonlinearities address possible practical constraints in real applications due to, for example, saturation or quantization among others. Then, using (i)-(ii) and the notion of bond-percolation theory, we relate the packet drop rate and the network percolation threshold to the (finite) number of iterations ensuring uniform connectivity and, thus, convergence towards the optimum value.