论文标题
通过原型学习的粗糙视网膜病变注释细化
Coarse Retinal Lesion Annotations Refinement via Prototypical Learning
论文作者
论文摘要
基于深度学习的视网膜病变分割方法通常需要大量精确的像素注释数据。但是,概述病变区域的圆或椭圆等粗糙注释的效率可能是像素级注释的六倍。因此,本文提出了一个注释细化网络,将粗糙注释转换为像素级分割掩码。我们的主要新颖性是原型学习范式的应用来增强不同数据集或类型病变的概括能力。我们还引入了一个原型称量模块,以处理病变过于较小的具有挑战性的病例。提出的方法在公开可用的IDRID数据集上进行了培训,然后将其推广到公共DDR和我们的现实世界中的私人数据集。实验表明,我们的方法显着改善了初始的粗面膜,并以较大的边缘优于非概率基线。此外,我们证明了原型称量模块在跨数据库和跨阶级设置中的有用性。
Deep-learning-based approaches for retinal lesion segmentation often require an abundant amount of precise pixel-wise annotated data. However, coarse annotations such as circles or ellipses for outlining the lesion area can be six times more efficient than pixel-level annotation. Therefore, this paper proposes an annotation refinement network to convert a coarse annotation into a pixel-level segmentation mask. Our main novelty is the application of the prototype learning paradigm to enhance the generalization ability across different datasets or types of lesions. We also introduce a prototype weighing module to handle challenging cases where the lesion is overly small. The proposed method was trained on the publicly available IDRiD dataset and then generalized to the public DDR and our real-world private datasets. Experiments show that our approach substantially improved the initial coarse mask and outperformed the non-prototypical baseline by a large margin. Moreover, we demonstrate the usefulness of the prototype weighing module in both cross-dataset and cross-class settings.