论文标题

深层空间和音调数据优化,用于均匀扩散介入

Deep Spatial and Tonal Data Optimisation for Homogeneous Diffusion Inpainting

论文作者

Peter, Pascal, Schrader, Karl, Alt, Tobias, Weickert, Joachim

论文摘要

基于扩散的镶嵌可以从稀疏数据中重建具有高质量的缺失图像区域,前提是它们的位置和值得到了很好的优化。这对于已知原始图像的应用程序(例如图像压缩)特别有用。选择已知数据构成了一个具有挑战性的优化问题,到目前为止,仅通过基于模型的方法进行了研究。到目前为止,这些方法需要在高质量或高速之间进行选择,因为在定性上令人信服的算法依赖于许多耗时的插图。我们提出了第一个神经网络体系结构,该架构允许快速优化像素位置和像素值,以进行均匀扩散。在训练过程中,我们将两个优化网络与基于神经网络的替代求解器结合在一起,以扩散涂漆。这个新颖的概念使我们能够基于近似介入方程解决方案的介入结果进行反向传播。与基于常见的基于模型的方法相比,我们的深度优化在测试时间内不需要单个介绍,我们的深度优化将数据选择加速了四个以上的数量级。这提供了具有高质量结果的实时性能。

Diffusion-based inpainting can reconstruct missing image areas with high quality from sparse data, provided that their location and their values are well optimised. This is particularly useful for applications such as image compression, where the original image is known. Selecting the known data constitutes a challenging optimisation problem, that has so far been only investigated with model-based approaches. So far, these methods require a choice between either high quality or high speed since qualitatively convincing algorithms rely on many time-consuming inpaintings. We propose the first neural network architecture that allows fast optimisation of pixel positions and pixel values for homogeneous diffusion inpainting. During training, we combine two optimisation networks with a neural network-based surrogate solver for diffusion inpainting. This novel concept allows us to perform backpropagation based on inpainting results that approximate the solution of the inpainting equation. Without the need for a single inpainting during test time, our deep optimisation accelerates data selection by more than four orders of magnitude compared to common model-based approaches. This provides real-time performance with high quality results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源