论文标题

一个规范性学习分析框架:超越预测性建模,并在可解释的AI上具有规定性分析和CHATGPT

A Prescriptive Learning Analytics Framework: Beyond Predictive Modelling and onto Explainable AI with Prescriptive Analytics and ChatGPT

论文作者

Susnjak, Teo

论文摘要

在学习分析领域的最新研究的重要组件集中在利用机器学习方法来预测高危学生,以启动及时的干预措施,从而提高保留率和完成率。这些研究大多数的总体特征仅在预测科学方面。与解释模型的内部分析有关的预测分析的组成部分,并在很大程度上忽略了其对利益相关者的个人案例的预测。此外,尝试使用数据驱动的规范分析来自动为高危学习者生成基于证据的补救建议的工作仍处于起步阶段。 可解释的AI是一个最近出现的领域,它提供了提供尖端工具,该工具支持透明的预测分析和技术,以为高危学生生成量身定制的建议。这项研究提出了一个新颖的框架,该框架既统一了透明的机器学习,又可以启用规定性分析的技术,同时整合了大语言模型中的最新进展。这项工作实际上是使用预测模型来识别计划不完整的危险学习者的拟议框架。然后,该研究进一步证明了如何通过两种案例研究的规定性分析来增强预测性建模,以便为使用ChatGpt有危险的人产生可读的人为可读性反馈。

A significant body of recent research in the field of Learning Analytics has focused on leveraging machine learning approaches for predicting at-risk students in order to initiate timely interventions and thereby elevate retention and completion rates. The overarching feature of the majority of these research studies has been on the science of prediction only. The component of predictive analytics concerned with interpreting the internals of the models and explaining their predictions for individual cases to stakeholders has largely been neglected. Additionally, works that attempt to employ data-driven prescriptive analytics to automatically generate evidence-based remedial advice for at-risk learners are in their infancy. eXplainable AI is a field that has recently emerged providing cutting-edge tools which support transparent predictive analytics and techniques for generating tailored advice for at-risk students. This study proposes a novel framework that unifies both transparent machine learning as well as techniques for enabling prescriptive analytics, while integrating the latest advances in large language models. This work practically demonstrates the proposed framework using predictive models for identifying at-risk learners of programme non-completion. The study then further demonstrates how predictive modelling can be augmented with prescriptive analytics on two case studies in order to generate human-readable prescriptive feedback for those who are at risk using ChatGPT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源