论文标题
MotionDiffuse:通过扩散模型的文本驱动人类运动产生
MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model
论文作者
论文摘要
人类运动建模对于许多现代图形应用非常重要,这些应用通常需要专业技能。为了消除外行的技能障碍,最近的运动生成方法可以直接产生以自然语言为条件的人类动作。但是,通过各种文本输入,实现多样化和细粒度的运动产生,仍然具有挑战性。为了解决这个问题,我们提出了MotionDiffuse,这是第一个基于基于扩散模型的文本驱动运动生成框架,该框架在现有方法上展示了几种期望的属性。 1)概率映射。 Motion-Diffuse不是确定性的语言映射,而是通过一系列注入变化的步骤生成动作。 2)现实的综合。 MotionDiffuse在建模复杂的数据分布和生成生动的运动序列方面表现出色。 3)多层操作。 Motion-Diffuse响应有关身体部位的细粒度指示,以及随时间变化的文本提示,任意长度运动合成。我们的实验表明,Motion-Diffuse通过说服文本驱动运动产生和动作条件的运动产生的利润来优于现有的SOTA方法。定性分析进一步证明了MotionDiffuse对全面运动产生的可控性。主页:https://mingyuan-zhang.github.io/projects/motiondiffuse.html
Human motion modeling is important for many modern graphics applications, which typically require professional skills. In order to remove the skill barriers for laymen, recent motion generation methods can directly generate human motions conditioned on natural languages. However, it remains challenging to achieve diverse and fine-grained motion generation with various text inputs. To address this problem, we propose MotionDiffuse, the first diffusion model-based text-driven motion generation framework, which demonstrates several desired properties over existing methods. 1) Probabilistic Mapping. Instead of a deterministic language-motion mapping, MotionDiffuse generates motions through a series of denoising steps in which variations are injected. 2) Realistic Synthesis. MotionDiffuse excels at modeling complicated data distribution and generating vivid motion sequences. 3) Multi-Level Manipulation. MotionDiffuse responds to fine-grained instructions on body parts, and arbitrary-length motion synthesis with time-varied text prompts. Our experiments show MotionDiffuse outperforms existing SoTA methods by convincing margins on text-driven motion generation and action-conditioned motion generation. A qualitative analysis further demonstrates MotionDiffuse's controllability for comprehensive motion generation. Homepage: https://mingyuan-zhang.github.io/projects/MotionDiffuse.html